UNCLASSTIFIED
ECURITY CLASSIFICATION OF THIS PA

D277 [/ F

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS

23, SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/ AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
NMSU - ECE - 89 - 005

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL
(if applicable)
PARL

6a. NAME OF PERFORMING ORGANIZATION

New Mexico State University

7a. NAME OF MONITORING ORGANIZATION

U. S. Army Research Office

6c. ADDRESS (Gty, State, and ZIP Code)

Las Cruces, NM 88003

7b. ADDRESS (City, State, and ZIP Code)

P. 0. Box 12211
Research Triangle Park, NC 27709-2211

8b. OFFICE SYMBOL
(if applicable)

Ba. NAME OF FUNDING /SPONSORING
ORGANIZATION

U. S. Army Research Office

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢. ADDRESS (City, State, and ZIP Code)

P. 0. Box 12211
Research Triangle Park, NC 27709-2211

10. SOURCE OF FUNDING NUMBERS

WORK UNIT
ACCESSION NO.

TASK

PROGRAM PROJECT
NO. NO.

ELEMENT NO.

11. TITLE (include Security Classification)

The Contour Model Architecture and Assembly Language

12. PERSONAL AUTHOR(S
o John B. .Johnston

13b. TIME COVERED
FROM

13a. TYPE OF REPORT
TO

16. SUPPLEMENTARY NOTATION
of the authgr(s), and should not _be const

17. COSATI CODES

FIELD GROU?P SUB-GROUP

14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT

The view, opinions and/or findings contained in-this report are those
d as, an fficig}glj}ﬁgrtment of the Army position,

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

The purpose of this report is limited
of the Contour Model Architecture CMA, the
. of a nested module computation as realized
Language CMAL. Pedagogic illustrations of

access.

computation are given in a separate report.
The Contour Model CM as it currently exists can account for most of the semantic

features of a broad spectrum of nested module computations;(M ‘does not yet contain
specific features for input/output, interrupts, or selectively restrictéd memory
The architecture CMA and the assembly language CMAL together comstitute a
detailed operational mechanism which realized CM as it currently exists.
relatively conventional, fully tagged, stack-oriented architecture whose tagged record
structure and assembly language are interided to be implemented in micocode.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

to presenting the tagged record structure
static structure of individual snapshots

in CMA, and-the Contour Model Assembly

the CMAL-level evolution of a nested module

CMA is a

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
CJ UNCLASSIFIEDAUNUMITED [sAME AS RPT.

JoTic UsERs

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (include Area Code) | 22¢, OFFICE SYMBOL

OD FORM 1473, aMaR

83 APR edition may be used until exhausted.
All other editions are obsoleta.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

THE CONTOUR MODEL ARCHITECTURE
AND ASSEMBLY LANGUAGE

JOHN B. JOHNSTON

NMSU-ECE-89-005
June 1989

CONTOUR MODEL ARCHITECTURE
and ASSEMBLY LANGUAGE

Table of Contents

0@
21
82
83
24
as
26

INTRODUCTION

CONTOUR MODEL ARCHITECTURE TAGGED RECORD STRUCTURE
MONO RECORD STRUCTURE

POLY RECORD STRUCTURE

NESTED MODULE COMPUTATION STATIC SNAPSHOT STRUCTURE
STATIC STRUCTURE OF THE PROGRAM COMPONENT

STATIC STRUCTURE OF THE EXECUTION COMPONENT

ACCESS SKELETON

STACK SKELETON

ENVIRONMENTS

ACCESS ENVIRONMENTS

PROGRAM ENVIRONMENTS

STACK ENVIRONMENTS

RECORD RETENTION AND REFERENCE COUNTS

CONTOUR MODEL ASSEMBLY LANGUAGE : CMAL

THE CMA INSTRUCTION CYCLE

DATA MOVEMENT WITHIN THE VIRTUAL PROCESSOR WORKSPACE

DATA MOVEMENT WITHIN THE STACK

nop no-operation

pop pop top record and discard

dup duplicate top record

sHp swap top two records

cab permute top three records

bca permute top three records

psh push following mono record onto stack

DATA MOVEMENT BETWEEN WORKING REGISTERS AND THE STACK

RANGE OF n: B <=n<=F

sav Rn save Rn to stack

res Rn restore Rn from stack

xch Rn exchange Rn and top record

sav save selected registers to stack

res restore selected registers from stack
tele sav

clr Rn clear Rn

clr clear selected registers

DATA MOVEMENT BETWEEN SPECIAL REGISTERS AND THE STACK

xch sp exchange sp and top record
rey sp revert sp

xch dp exchange dp and top record
res dp restore dp from stack

sav pid save pid register to stack

Page 081 of 0886

14 Jun 89

201
ea1
001
092
004
004
285
285
285
225
285
206
2e6
006
006
206
007

097

097
007
097
087
07
208
008

208

208
008
0a8
299
209
203
283
289

210

210
210
219
019
010

Table of Contents (continued)

.2.0.

.2.9.0.

20

241

.2.1.9.

DATA MOVEMENT BETWEEN SPECIAL REGISTERS AND THE STACK (continued)

xch ip exchange ip and top record
res ip restore ip from stack
sav ep save ep to stack

SCALER DATA MANIPULATION INSTRUCTIONS
NULL PRODUCING INSTRUCTIONS

DEGREE @ NULL PRODUCING INSTRUCTIONS
mak null push null to stack

TAG PRODUCING INSTRUCTIONS
DEGREE @ TAG PRODUCING INSTRUCTIONS

RANGES: mmm € <tupe mono>; vp % ppp € <tupe poly>
mak tag mmm push tag mmm to stack

mak tag vp push tag vp to stack

imm mak tag ppp push tag ppp to stack, immediate size

DEGREE 1 TAG PRODUCING INSTRUCTIONS

RANGE ; vp # ppp € <type poly>

mak tag ppp push tag ppp to stack, size on stack top
tak tag push tag of top record

ind tak tag push tag of top record, indirect

LOGICAL PRODUCING INSTRUCTIONS

DEGREE @ LOGICAL PRODUCING INSTRUCTIONS

mak false push log f
mak true pusk log t

DEGREE 1 LOGICAL PRODUCING INSTRUCTIONS

not logical complement top record

DEGREE 2 LOGICAL PRODUCING INSTRUCTIONS

XXX xxx € {and, or, xaor, nand, nor, ...}

DEGREE 2 ARITHMETIC RELATIONAL INSTRUCTIONS

gt greater than

ge greater than or equal to

le less than or equal to
-t less than

eq equal to

ne not equal to

DEGREE 2 GENERAL RELATIONAL INSTRUCTIONS

eq equal to

ne not equal to

ind eq equal to, indirect

ind ne not equal to, indirect

REGISTER SELECTOR PRODUCING INSTRUCTIONS

DEGREE @ REGISTER SELECTOR PRODUCING INSTRUCTIONS

mask none select no registers (push msk 0000)
mask all select all register (push msk FFFF)

Page 082 of 006

018

a1
a1
a

211
211

a1
811

212

812

212
212
212

212

212
212
a12

813

e13
213
813
213
213

913
213

213

213
213
213
213
213
213

013

813
213
813
213

214

214

214
214

Table of Contents (continued)

3.2.3.1.
00

a0
a1
22

04
85

a7

00

@e
a1
a2
a3
24
85

DEGREE 1 REGISTER SELECTQOR PRODUCING INSTRUCTIONS

not bit complement mask on stack top

DEGREE 2 REGISTER SELECTOR PRODUCING INSTRUCTIONS

XXX xxx € {and, or, xor, nand, nor, ...}
INTEGER PRODUCING INSTRUCTIONS

DEGREE @ INTEGER PRODUCING INSTRUCTIONS

mak zero push int @

mak one push int 1

tak stk len push stack length
tak stk tos push stack tos

DEGREE 1 INTEGER PRODUCING INSTRUCTIONS

not bit complement (1's complement)
neg negative (2's complement)

abs absolute value

tak len push len of poly record

tak ref push ref of poly record

tak tos push tos of stack

tele tak stk len tak stk len of other vp
tele tak stk tos tak stk tos of other vp

DEGREE 2 INTEGER PRODUCING INSTRUCTIONS

XXX xxx € {and, or, xor, nand, nor, ...}

add add top two

sub subtract top from next

mpy multiply top two

intdiv divide top into next, giving quotient & remainder
quot intdiv, leaving only quotient

rem intdiv, leaving only remainder

RECORD ALLOCATION

RANGE: vp % ppp £ <type poly>

get stk get nen stack record, immediate size

xch stk exchange stack records

sav stk save duplicate of stack record with selected registers
alocopy allocate copy of poly record

aloc vp allocate virtual processor

imm aloc ppp allocate record of type ppp, immediate size

aloc ppp allocate record of type ppp, size on stack

aloc allocate poly record, using tag on stack

POINTER AND SUBPOINTER OPERATIONS: SELECTION AND INDEX MODIFICATION
("sel" means "push subpointer onto stack")

THE BREAK-SUBPOINTER INSTRUCTION
brk subptr break subpointer

THE TWO-ARGUMENT SELECTION INSTRUCTIONS (select)

LOCATION OF: POINTER INDEX

sel *,x stack immediate
sel #*,# stack stack

sel *,Rj stack Rj

sel Ri,x Ri immediate
sel Ri,* Ri stack

sel Ri,Rj - Ri Rj

14 Jun 89

Page 003 of 006

814
214

214
814

814

214

214
214
814
214

e14

814
@14
@14
214
914
814
814
815

215

215
015
215
213
215
@15
815

215

016
016
816
@17
17
817
217
917

017

918
a18

218

918
218
218
219
219
219

Table of Contents (continued)
3.4.2,

THE THREE-ARGUMENT POINTER SELECTION AND INDEX MODIFICATION INSTRUCTIONS

(modify-then-select and select-then-modify)

LOCATION OF:

modsel *,Rj,m
selmod *,Rj),m
modsel #,Rj,*
selmod #*,Rj,*
modsel %,Rj,Rk
selmod %,Rj,Rk
modsel Ri,Rj,m
selmod Ri,Rj,m
modsel Ri,Rj,*
selmod Ri,Rj,*
modsel Ri,Rj,Rk
selmod Ri,Rj,Rk

THE TWO-ARGUMENT SUBPOINTER INDEX MODIFICATION AND SELECTION INSTRUCTIONS

POINTER

stack
stack
stack
stack
stack
stack
Ri
Ri
Ri
Ri
Ri
Ri

INDEX MODIFIER
Rj immediate
Rj immediate
Rj stack

Rj stack

Rj Rk

Rj Rk

Ri immediate
Rj immediate
Rj stack

Rj stack

Rj Rk

Rj Rk

(modify-then-select and select-then-modify)

LOCATION OF:

modsel Ri,m
selmod Ri,m
modsel Ri,*
selmod Ri,*
modsel Ri,Rj
selmod Ri,Rj

SUBPOINTER
Ri
Ri
Ri
Ri
Ri
Ri

MODIFIER

immediate
immediate
stack
stack

Rj

Rj

THE THO-ARGUMENT SUBPOINTER INOEX MODIFICATION INSTRUCTIONS

LOCATION OF: SUBPOINTER MODIFIER
modsub *,m stack immediate
modsub #, % stack stack
modsub *,Rj stack Rj

modsub Ri,m Ri immediate
modsub Ri,* Ri stack
modsub Ri,Rj Ri Rj

DISPLAY VECTOR RELATED INSTRUCTIONS ("DV" means display vector)

DISPLAY VECTOR FETCH INSTRUCTIONS

fet dsp x fetch from DV, immediate index
fet dsp * fetch from DV, stack index
fet dsp Ri fetch from DV, register index

DISPLAY VECTOR STORE INSTRUCTIONS

sto dsp x store into DV, immediate index
sto dsp * store into DV, stack index
sto dsp Rt store into DV, register index

DISPLAY INSTRUCTIONS FOR ACCESSING INTO EXECUTION CONTOURS

LOCATION OF: DV INDEX E-CON INDEX
dsp x,y immediate immediate
dsp x,* immediate stack

dsp x,Rj immediate Rj

dsp ¥,y stack immediate
dsp *,% stack stack

dsp *,Rj stack Rj

dsp Ri,y Ri immediate
dsp Ri,* Ri stack

dsp Ri,Rj Ri Rj

Page 804 of 006
14 Jun 89
219

219
g2e
020
828
820
020
021
021
021
021
021
@22

822

@22
@22
023
223
223
823

223

824
824
824
924
824
025

@25

@25

025
@25
@25

826

826
826
026

926

@27
027
027
027
028
928
928
028
029

Table of Contents (continued)

3.6.

00
21
22
23
24
85

3.7.

@0
a1
@2
3.8.

3.8.0.

3.8.2.8.

LABEL MANIPULATION INSTRUCTIONS

brk i-lab
brk ip-lab
brk cp-lab
mak i-lab
mak ip-lab
mak cp-lab

break i-lab
break ip-lab
break cp-lab
make i-lab

make ip-lab
make cp-lab

DATA MOVEMENT BETWEEN THE VIRTUAL PROCESSOR STACK AND MEMORY

fet
sto
stor

CONTROL INSTRUCTIONS

BRANCHES
CONDITION ON L:

CONDITION ON ip:

b eL

bt GL

bf @l

imp

jsb

LEAPS

leap

tele leap

TELE DISPLAY VECTOR

TELE DISPLAY VECTOR
RANGE OF i:

tele fet dsp x
tele fet dsp *
tele fet dsp Ri

TELE DISPLAY VECTOR

RANGE OF i:

tele sto dsp x
tele sto dsp *
tele sto dsp Ri

fetch
store direct
store reverse

L must be a label of some instruction in the
current instruction record

ip must point to some instruction in the
current instruction record

branch unconditionally to L

branch to L if tos rec true; pop tos rec
branch to L if tos rec false; pop tos rec
ump using ip from stack (res ip)

jump sub using ip from stack (xch in)

leap using i-lab from stack; pop i-lab
cause other vp to leap

INSTRUCT 1ONS

FETCH INSTRUCTIONS
8 < i <F

cause other vp to fet dsp x
cause other vp to fet dsp #
cause other vp to fet dsp Ri

STORE INSTRUCTIONS
B <=1 <=F

cause other vp to sto dsp x
cause other vp to sto dsp #
cause other vp to sto dsp Ri

MODULE ENTRY INSTRUCTIONS

MODULE ENTRY STACK INSTRUCTIONS

say

tele sav

xch lab

tele xch lab
sav stk

xch stk

save selected registers

cause other vp to save selected registers

exchange labels

cause other vp to xch lab

save duplicate of stack record with mask and selected registers
xchange stack records

THE EXECUTION CONTOUR ADJUNCTION INSTRUCTION

adjoin

adjoin-and-link new e-con

Page 885 of 086

14 Jun 89

029

@29
@29
230
a3e
230
230

230

831
831
832

832

832

032
032
832
832
233

033
@33
@33
834

834

834
034
033

033

035
035
035

936

936

836
036
936
936
036
036

936
a3v

Table of Contents (continued)

3.8.4.

MODULE EXIT STACK INSTRUCTIONS

ep
ep
lab
lab
reg
reg
lab,
Llab,
stk
stk
ep
lab
lab
stk,
stk,
stk,
stk,
lab,
lab,
stk,

ABBREVIATIONS: stk = stack

lab = labl (i-lab)

reg = registers

val = value

ep =

c-rvrt =
rs revert stk
cs c-rvrt stk
ee extract ep
rl restore lab
dl discard lab
rsee revert stk, extract
csee c-rvrt stk, extract
rsrl revert stk, restore
csrl c-rvrt stk, restore
rlrr restore lab, restore
dlrr discard lab, restore
rsrlrr revert stk, restore
esrlrr c-rvrt stk, restore
rvrs retain val, revert
rves retain val, c-rvrt
rvee retain val, extract
rvrl retain val, restore
rvdl retain val, discard
rvrsee retain val, revert
rvcsee retain val, c-rvrt
rvrsrl retain val, revert
rvesrl retain val, c-rvrt
rvrlrr - retain val, restore
rvdlrr retain val, discard
ryrsrirr retain val, revert
rvesrlrr retain val, c-rvrt

stk,

environment pointer
conditional duplication revert

restore
restore

extract
extract
restore
restore
restore
restore
restore
restore

reg
reg

ep
ep
lab
lab
reg
reg
lab, restore reg
lsb, restore reg

Page 086 of 086

14 Jun 89

@37

838
038
838
838
938
938
038
938
@38
038
038
839
839
039
839
839
933
939
033
038
038
040
048
040
048
040

CONTOUR MODEL ARCHITECTURE 22 Jun B89 Page 981 of 843
and ASSEMBLY LANGUAGE

@. INTRODUCTION

The purpose of this report is Llimited to presenting the tagged record structure of the Contour Model
Architecture CMA, the static structure of individual snapshots of a nested module computation as realized in
CMA, and the Contour Model Assembly Language CMAL. Pedagogic illustrations of the CMAL-level evolution of a
nested module computation are given in a separate report.

The Contour Model CM as it currently exists can account for most of the semantic features of a broad spectrum
of nested module computations; CM does not yet contain specific features for input/output, interrupts, or
selectively restricted memory access. The architecture CMA and the assembly language CMAL together constitute
a detailed operational mechanism which realizes CM as it currently exists. CMR is a relatively conventional,
fully tagged, stack-oriented architecture whose tagged record structure and assembly language are intended to
be implemented in microcode. The architectural potency required of CMA to realize CM is contained in: the
tagged record structure (sec. 1); the computation snapshot structure, including the record retention feature
(sec. 2): and a few special instructions of the assembly language CMAL (sec. 3). CMA incorporates a segmented
virtual memory system with provisions for MULTICS-like dynamic linking, but details of this memory system are
treated in a separate report: for purposes of this report it suffices to envision memory as simply a large
sequence of byte-size memory units, each individually addressable,

A nested module computation is a time-sequence of snapshots. Each snapshot is a data structure having both a
program component and an execution component. In this report, the program component is treated as being time
invariant throughout a computation; the course of execution of the program is recorded in the execution
component. A data structure is composed of poly records and their mono record subrecords.

1. The Contour Modal Architecture Tagged Record Stucture

There are two classes of records in CMA: mono records, which are elementary data items, and poly records,
ahich are aggregate data items. Only poly records can be allocated; mono records can exist only as subrecords
of poly records. Each record is a byte sequence which is the concatenation of twe bit sequences: a tag and a
value. The syntactic structure and byte length of a record are determined by the tag of the record and remain
invariant during the lifetime of the record.

1.8. Mono Record Structure

A mono record is the concatenation of a tag and a value. The tag of a mono record consists simply of a fixed
but unspecified bit pattern called the type field of the tag. The value of a mono record is a bit pattern
which has a meaning only when interpreted relative to the tag of the mono record. Each mono record has
associated with it a finite set of bit patterns which can serve as values of mone records having that type.
The types, values, and syntactic structures of mono records are specified by the syntax for mono records
displayed in Table 1.

The null mono record has a vacuous - that is, zero bit length - value, and a tag type field which (s a byte
consisting of eight @ bits; null is the only mono record whose tag bit pattern is specified. There are only
two distinct logical values: f (false) and t (true). The value of a tag mono record may be the tag of any
mono record or the tag of any poly record; since tags of mono and poly records may be of various different
lengths, the value of a tag record determines it's own length and hence that of the tag record. A mask mono
record serves as a register selector for saving and restoring selected virtual processor registers to and from
the virtual processor stack; the 16 mask value bits <msk.8>, ... , <msk.F> are in one-to-one correspondence
Wwith the 16 virtual processor registers R@, ... , RF, and serve to identify the registers whose contents are
to be saved or restored. The integer values are bit patterns of some fixed but unspecified bit length shich
represent integers according to the 2's complement interpretation. The value of a pointer mono record is
interpreted in such a manner that the pointer mono record in effect points to the tag of some poly record; the
syntactic structure and interpretation of a pointer value are given in a separate report. The value of a
subpointer mono record is the concatenation of a pointer value and an integer value which serves as a
subrecord index; hardware use of such a subpointer value to access an indexed subrecord requires microcode
interpretation of the tag of the poly record pointed to by the pointer value portion of the subpointer value.
In this report we shall indicate pointer values in the symbolic form "8 P", where "P" is an identifier which
designates the intended target poly record. A <cp> is a contour-pointer, that is, a pointer whose target poly
record is a program contour. An <ip> is an instruction-pointer, that is, either a pointer which points to an
instruction record or else a subpointer which points to a code byte subrecord of an instruction record. Afn
<ep> is an environment-pointer, which either iz null or else is a pointer whose target poly record is an
execution contour; as discussed in sec. 2, an environment-pointer identifies what is known as an execution
environment. A contour-label mono record thus designates both a program contour and an execution environment,
shile an {instruction-label mono record designates both a code point Within an instruction record and an
execution environment. An <iden>, or identifier, is a non-empty sequence of letters and digits, the first of
ahich is a capital letter.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 802 of 043

{rec mmm> mmm € <type mono>
{tag mmm> <val mmm> mmm € <type mono>
<type scaler> | <type struct>

null | log | tag | msk | int

ptr | subptr | i-lab | ip-lab | cp-lab

80 <rec mono>

21 <rec mmm>

82 <type mono>
@83 <type scaler>
84 <type struct>

@S <tag mono> <tag mmm> mmm € <type mono>
06 <tag mmm> mmm mmm € <type mono>
07 <val null> £ {e means vacuous)
P8 <val log> flt (false or true)

03 <val tag>
18 <val msk>

<{tag mone> | <tag poly>
<{msk.F><msk.E>...<msk.@>

11 <msk. > g1 1 @< i <vp.len =16
12 <val int> {sign><magnitude>
13 <sign> el + | -

14 <magnitude>

15 <nv seq digit>

16 <digit>

17 <val ptr>

18 <val subptr>

19 <subrec desig>

20 <spec subrec desig>

<nv seq digit>

{digit> | <nv seq digit><digit>

g1 112131415161 718189

@ <iden>

@ <iden>.<subrec desig>

<val int> | <spec subrec desig> | <iden>
len | ref | pid | lab | ip |l ep | spl dp 1 ap |
con | dsp | tes | xref | xlab

{cap let><seq iden char>

€ | <seq iden char><iden char>

<cap let> | <small let> | <digit>

[Y T T Y T T | T T 1 Y { Y | U N ' S N (N | ER 1 U T N | T RN L [N [}

21 <iden>
22 <seq iden char>
23 <iden char>

24 <cap let> =Al ... | Z

25 <small let> =al ... |z

26 <val i-lab> = <ip> <ep> instruction label
27 <val ip-lab> = {pip> <ep> instruction procedure label
28 <val cp-lab> = {cp> <ep> contour procedure label
29 <ip> = {rec subptr> instruction pointer
30 <pip> = {rec ptr> instruction procedure pointer
31 <Lep> = {rec ptr> contour procedure potinter
32 <ep> = <rec ptr> | null enyironment pointer

Table 1: A Syntax for CHA Mono Records

1.1. Poly Record Structure

A poly record is the concatenation of a tag and a value. The tag of a poly record consists of a fixed but
unspecified bit pattern called the type field of the tag, zero or more special bits whose use depends on the
type of poly record, and an embedded integer mono record called the length field which is program accessible
as a read-only special subrecord. The value of a poly record consists of: an integer mono record called the
reference count field which is program accessible as a read-only special subrecord of the poly record; zero or
more additional special subrecords depending on the type of poly record; and zero or more non-special
subrecords. The length special subrecord of a poly record equals the number of non-special subrecords of the
poly record; this length is set by microcode during allocation of the poly record and remains fixed during the
Lifetime of the poly record. The reference count special subrecord of a poly record is maintained by
microcode to reflect the number of (sub)pointers ({(in)to the poly record. Each special or non-special
subrecord of a poly record begins at a byte position within the poly record which depends solely on the index
of the subrecord and the tag of the poly record, and not on the tuype of the subrecord. Special subrecords of
poly records have negative indexes, and are always mono records. Non-special subrecords of a poly record have
ordinal (non-negative) indexes:; depending on the type of the poly record, either all its non-special
subrecords are mono records or else all its non-special subrecords are single bytes. The types and syntactic
structures of poly records are specified by the syntax for poly records displayed in Table 2.

A text poly record has two special subrecords: the length field (index -2), and the reference count field
(index -1). Each non-special subrecord of a text poly record is an 8-bit byte representing one of the 255
characters.

An instruction poly record has three special subrecords: the length field (index -3), and the reference count
field (index -2), and the environment pointer subrecord (index -1). The non-special subrecords of an
instruction poly record comprise a byte sequence which constitutes the coded form of a sequence of CMAL
instructions.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 003 of 943
88 <rec poly> {rec ppp> ppp € <type poly>
81 <rec ppp> {tag ppp> {refval ppp> ppp € <type poly>
02 <type poly> <type poly byte> | <type poly mono>
@3 <type poly byte> txt | ins
04 <type poly mono> stk | vet | p-con | e-con | vp
05 <tag poly> {tag ppp> ppp € <type poly>

@6 <tag ppp>
@7 <tag ppp>
08 <ppp.len>
09 <tag vp>

10 <vp state>

ppp <ppp.len>
con <ppp.len> ppp
{rec int>

vp <vp state>

new | awake | asleep | terminated

£

p-con,e-con,vp, ¥ ppp € <tupe poly>
= p-con,e-con
€

vp ¥ ppp € <type poly>

(implicitly, vp.len = 16)

11 <refval ppp> = <{ppp.ref> <val ppp> ppp € <type poly>
12 <ppp.ref> = <rec int> ppp € <type poly>
13 <val txt> = ixt, @0<txt. 1> <Axton> n = txt.len-1
14 <txt. > = <char> (256 character set) @ < U< txt.len
15 <val ins> = <ins.ep> <ins.@><ins.1>...<ins.n> n = ins.len-1
16 <ins. > = <byte> 9 < 1< ins.len
17 <byte> = <byte.@><byte.i>.,.<byte,.?>
18 <byte. > = <bit>
19 <bit> =0 |1
20 <val stk> = {stk.tos> <stk.sp> <stk.@><stk.1>...<stk.n> n = stk.len-1
21 <stk.tos? = <{rec int>
22 <stk.sp> = <3p>
23 <sp> = null | <rec ptr> stack ptr
24 <stk. > = <byte> B <1 < stk.len
25 <val vet> = <yct.@><vet. 1>, . . &vet.n> n = vet. len-t
26 <vet. = {rec mono> B < U < vet.len
27 <val p-con> = <{p-con.dsp> <p-con.con> <p-con.ip> <p-con.ep>

<p-con.@> <p-con.!> ... <p=-con.n> n = p-con. len-1
28 <p=-con.ord> = <rec int> | null
29 <p-con.tag> = {rec tag>
38 <p-con.ip> = <ip> see 1.9.27
31 <p-con.ep> = {ep> see 1.0.28
32 <p-con.i> = {rec mono> @ < i < p-con.len

33 <val e-con> <{e-con.dsp> <e-con.sp> <e-con.ap> <e-con.ep>

{e-con.@> <e-con.i> ... <e-con.n> n = e-con.len-i
34 <e-con.dsp> {rec mono>
35 <e=con.sp> {3p> see 1.1.23
36 <e=con.ap> <ap>
37 <ap> {rec ptr> antecedent ptr

<ep? see 1.0.28
<rec mono> B <t < e-con.len

38 <e-con.ep>
39 <e-con. >

L N | | O | N [U | I [}

40 <val vp> <yp.pid> <vp.dp> <vp.sp> <vp,lab>
<yp.@> <Syp.1> ... Lyp.F>

41 <Lvp.pid> = {rec ptr> processor tdentity register
42 <vp.dp> = null | <rec ptr> display ptr
43 <vp.sp> 1= {gp> see 1.1.23
44 <yp, lab> 1= {rec i-lab> label register
45 <yp. > 1= {vp reg R> working register R
46 <vp reg Ri> := {rec mono> @ <i<vp.len =16

Table 2¢ A Syntax for CMA Poly Records

A stack poly record has four special subrecords: the length field (index -4), the reference count field
(index -3), the top-of-stack subrecord (index -2), and the stack pointer subrecord (index -1). The
non-special subrecords of a stack poly record comprise a byte sequence which constitutes the place of
residence for the mono records which are pushed into and popped from the stack record. At all times, the
top-of-stack integer has a non-negative value which does not exceed the value of the length field. The stack
record is empty if and only if the top-of-stack integer equals the length field. When the stack record is
non-empty: the top-of-stack integer is the index of the first byte of [the tag of) the effectively "top" mono
record in the stack, the first byte of (the tag of) each non-top mono record in the stack immediately folloss
the last byte of (the value of) the immediately preceding mono record in the stack, and the last byte of (the
value of) the effectively "bottom" mono record in the stack is the last byte of (the value of) the stack

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 804 of 943

record.The top mono record contained in a non-empty stack record is popped out by a microcode action shich
reads out (and then clears) the successive bytes of the top mono record while incrementing the top-of-stack
integer, according to the tag of the top mono record. A new top mono record is pushed into a non-full stack
record by a microcode action which decrements the top-of-stack integer while writing in the successive bytes
of the new mono record in reverse order, according to the tag of the new mono record. A stack record is
effectively full relative to an attempt to push in a new mono record if and only if the byte length of the new
mono record exceeds the top-of-stack integer,

A vector poly record has two special subrecords: the length field (index -2), and the reference count field
(index -1). The byte length of the space reserved within the vector record value for each non-special
subrecord equals the byte length of the longest type of mono record, namely an instruction label which
incorporates the sub-pointer form of <ip> and the pointer form of <ep>; each actual non-special mono subrecord
of the vector record is left-justified in the space reserved for it.

A program-contour poly record has six special subrecords: the length field (index -8), the reference count
field (index -5), the ordinal subrecord (index -4), the tag subrecord (index -3), the instruction-pointer
subrecord (index -2), and the environment-pointer subrecord (index -1). The non-special subrecords of a
program contour are handled in the same manner as for a vector record.

An execution-contour poly record has six special subrecords: the length field (index -6), the reference count
field (index -5), the display management subrecord (index -4), the stack-pointer subrecord (index -3), the
antecedent-pointer subrecord ({index -2), and the anvironment-pointer subrecord (index -1}. The non-special
subrecords of a execution contour are handled in the same manner as for a vector record.

A virtual processor poly record has five special subrecords: the reference count field (index -3), the
processor-identity register (index -4), the display-pointer register {index -3), the stack-pointer register
(index -2), and the instruction-label register {index -1); the usual length field is absent since the CMA
design provides 16 non-special subrecords for all virtual processors. The 16 non-special subrecords of a
virtual processor are considered to be the 16 working registers R@, R1, ... , RE, RF, and they arz handled in
the same manner as for a vector record. A short field in the virtual processor tag serves to register under
microcode control the dynamic state of the virtual processor. The processor identity register of a virtual
processor contains a read-only pointer to the virtual processor itself; this register is set at the time of
allocation of the virtual processor, and constitutes identification of the virtual processor.

The roles of the various special subrecords of poly records are further explained in secs. 2 and 3.

2. MNested Module Computation Static Snapshot Structure

A nested module computation is a time sequence of snapshots. Each snapshot is a self-contained data structure
ahich has a natural decomposition into a program component and an execution component. A self-contained data
structure is a data structure all of whose contained (sub)pointer mono record subrecords point (in)to poly
records belonging to the data structure. The program component of a snapshot (s a self-contained data
structure; the execution component of a snapshot is generally not a self-contained data structure, since it
usually contains (sub)pointers which point (in)to poly records of the program component. In this report, the
program component of a computation is to be regarded as time-invariant, that is, the same in all snapshots of
the computation. The execution component, however, evolves rapidly through successive snapshots of the
computation. Thus a computation may quite properly be regarded as an execution of its program component, #ith
the course of the execution being recorded in the execution component.

2.0 Static Structure of the Program Component

The program component is a self-contained data structure consisting of two parts: a program skeleton, and
additional constant structure which is pointed to from within the program skeleton. The skeletal structure is
of central importance for nested module computations and a specialized form and purpose, nhile the additional
constant structure is specific to individual programs and can be quite arbitrary. Hence we describe in this
report only the skeletal structure, leaving descriptions of the additional constant structure to
considerations of specific programs.

The program skeleton is a forest structure composed of program contours and instruction records. The
environment pointers of the program contours and instruction records constitute the links which realize the
forest structuring of the program skeleton; each such environment pointer either is null or is & polnter to
some program contour in the program skeleton. A record R in the program skeleton, either e program contour or
an instruction record, is the root of some tree within the forest structure if and only if R is an instruction
record. ALl non-null environment pointers in the program skeleton point away from tree leaves and toward tree
roots. The instruction painter of a program contour R in the program skeleton is a (sub)pointer shich points
(in)to some instruction record in the program skeleton whose environment pointer in turn is non-null and
points to R. The following statements are consistent with all the above constraints and are presented to
sugaest the variety of program skeleton structures which can occur in practice; a program contour is never a
tree leaf but may be a tree root; an instruction record is always a tree leaf, and may also be a tree root; an

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 005 of 043
instruction record need not be pointed (in)to by the instruction pointer of any program contour; and, if an
instruction record | is pointed (in)to by the instruction pointer of some program contour R then the
environment pointer of | is non-null and points to R,

2.1. Static Structure of the Execution Component

The execution environment is a generally non-self-contained data structure consisting of two parts: a
dynamically varying execution skeleton, and additional dynamic structure which is is pointed to from within
the execution skeleton. The dynamic skeleton is of central importance for nested module computations and has
a specialized form and purpose, while the additional dynamic structure is specific to individual computations
and can be quite arbitrary. Hence we describe in this report only the skeletal structure, leaving
descriptions of additional structure to considerations of specific computations.

The execution skeleton is composed of twe interconnected forest structures: the access skeleton and the stack
skeleton.

2.1.8 The Access Skeleton

The access skeleton is a forest structure composed of execution contours and virtual processors. The
environment pointers of the execution contours and the environment pointer portions of the instruction labels
of the virtual processors constitute the links which realize the forest structuring of the access skeleton:
each such environment pointer either null or is a pointer to some execution contour in the access skeleton. A
record R of the access skeleton, either an execution contour or a virtual processor, is the root of some tree
within the forest structure if and only if the environment pointer of R is null. Each virtual processor in
the access skeleton is necessarily a leaf of some tree within the forest structure. ALl non-null environment
pointers in the access skeleton point away from tree leaves and toward tree roots. An execution contour may
be a tree leaf in the access skeleton; both execution contours and virtual processors may be tree roots in the
access skeleton.

Within each snapshot, the access skeleton is related to the program skeleton as follous. The antecedent
pointer of an execution contour in the access skeleton is a pointer which points to some program contour in
the program skeleton. Let IP and EP be the -instruction pointer and environment pointer portions of the
instruction label of some virtual processor in the access skeleton; IP is necessarily a subpointer which
points into some instruction record | of the program skeleton. EP is null if and only (f the environment
pointer of | is null. 1f EP is non-null then EP is necessarily a pointer which points to some execution
contour EC in the access skeleton, and the antecedent pointer of EC is necessarily a pointer which points to
some program contour PC in the program skeleton; the environment pointer of | is necessarily a pointer which
points to PC.

2.1.1. The Stack Skeleton

The stack skeleton is a forest structure composed of stack records together with the execution contours and
virtual processors comprising the access skeleton. The stack pointers of the stack skeleton records
constitute the Llinks which realize the forest structuring of the stack skeleton. A record R in the stack
skeleton is the root of some tree within the forest structure if and only if the stack pointer of R is null.
f record R in the stack skeleton is a leaf of some tree within the forest structure if and only if R is an
execution contour or a virtual processor in the access skeleton. ALl non-null pointers in the stack skeleton
point away from tree leaves and toward tree roots.

A stack record in the stack skeleton which is pointed to by the stack pointer of a virtual processor in the
access skeleton is not pointed to by any other pointer in the execution component; the stack record is said to
be attached to the virtual processor, and is used by that virtual processor for expression evaluation and for
the bookkeeping associated with entries into and exits from program modules.

2.2. Environments

Within a snapshots of a nested module computation, three types of environments are of interest: access
environments, program environments, and stack environments. An access environment is an environment within
the reduced access skeleton, which is the forest structure comprising just the execution contours of the
access skeleton. A program environment is an environment within the reduced program skeleton, which is the
forest structure comprising just the program contours of the program skeleton. A stack environment is an
environment within the reduced stack skeleton, which is the forest structure comprising just the stack records
of the stack skeleton.

In any forest structure F whose links point away from tree leaves and toward tree roots, the concept of
environment can be defined as follows. An environment E in F is any possibly empty sequence of elements of F,
E = <E(1),E(2),...,E(n)> with n > @, which satisfies the following conditions: E{(n) has a null link, and for
1<i<n the Llink of E(i) points to E{(i+1). The forest structure has exactly one empty environment: the empty
sequence obtained by taking n=@. The first element E(1) and the last element E(n) of a non-empty environment

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Paga 006 of Q43

E in F are called the top and bottom elements of E, respectively, Environments within F are considered to be
designated by mono records as follows. The mono record null designates the empty environment, If P is a
pointer mono record which points to an element R of F, then P designates the environment within F whose top
record is R.

2.2.8. Access Environments

ficcess environment are associated with label mono records and virtual processors as follows., Let L be either

an instruction label or a contour label and let EP be the environment pointer of L. |f EP is null, then the
access environment associated with L is the empty environment. If EP is a pointer which points to an
execution contour EC, then the access environment associated with L is the one whose top element is EC. [fm

is a virtual processor having instruction label L, then the access environment associated with 11 is the access
environment associated nith L.

2.2.1. Program Environments

Program environments are associated with label mono records, virtual processors, and access environments as
follows. Let L be a contour label and let CP be the contour pointer of L; the program environment associated
with L is the one designated by CP. Let L be an instruction label and let EP be the environment pointer of
the instruction record (in)to which the instruction pointer of L necessarily points; the program environment
associated with L is the one designated by EP. Let MM be a virtual processor having instruction label L; the
program environment associated with 1T is the one associated with L. Let € be an access environment. 1f E is
empty, then the program environment associated with E is empty. If E is non-null and if AP 1is the antecedent
pointer of the top execution contour in E, then the program environment associated with E is the one whose top
element is the program contour which is necessarily pointed to be AP.

2.2.2. Stack Environments

Stack environments are associated with virtual processors as follows, Let T be a virtual processor and let SP
be the stack pointer of M. If SP is null, then the stack environment associated with T is empty. |[f SP is a
pointer which points to a stack record SR, then the stack environment associated with M is the one whose top
stack record is SR.

Each virtual processor T in the stack skeleton effectively has associated with it a single conceptual stack]
which can hold arbitrarily many mono records and whose sequence of contained mono records, in top down order,
can be modified as follows. Let SE be the stack environment of 1. |f SE is empty, then the sequence of mono
records in CS is empty. But suppose that SE = <SR{1),SR(2),...,SR(n)>, aith n>1. The n the sequence of mono
records in CS equals the concatenation of the sequence of mono records, in top down order, contained in the
successive stack records SR(1), SR(2), ... , SR(n) of SE. MWhile it is convenient to think in terms of the
unbounded conceptual stack CS, in practice poly records must be allocated in fixed sizes so that the
conceptual stack CS must be implemented as a linked stack of stack records.

2.3. Record Retention and Reference Counts

The contour model incorporates the following principle of poly record retention: a poly record R in the
execution component of a computation must be retained - that is, not deallocated - if either R is an anake
virtual processor or R is pointed to by (pointer portion of) a (sub)pointer which is a subrecord of some poly
record other than R which must itself be retained.

The principle of poly record retention is upheld in CMA by the reference count mechanism. Each act of poly
record allocation is performed by microcode on behalf of some awake virtual processor; the microcode allocates
the poly record, constructs one pointer to the poly record, delivers the pointer to the virtual processor, and
sets the reference count of the poly record to | to reflect the one pointer. Thereafter, each construction or
destruction of a (sub)pointer whose pointer value points to the poly record is accompanied by an
incrementation or decrementation of the reference count of the poly record, performed automatically by
microcode. A poly record becomes a candidate for deallocation only when its reference count drops to zero.
Three observations are in order. First, maintenance of reference counts requires implicit extra memory
accesses. Second, not all deallocations allowed by the principle of retention are necessarily triggered by
reference counts dropping to zero: garbage collection is generally also required. Third, memory allocation
and deallocation mechanisms are beyond the scope of this report.

3. The Contour Model Assembly Language CHAL

The Contour Model Architecture CMA is somenhat unconventional in employing full tagging of both poly records
and mono records and in automatically supporting the principle of retention. By contrast, CMR provides a
rather conventional stack-oriented macro level programming language, the Contour Model Rssembly Language CMAL.
The purpose of this section is to detail the CMAL instruction repertoire, giving for many instructions
before/after picture pairs to show graphically the net effects of instruction executions. While the

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 0807 of 043

possibilities of underflow and overflow of virtual processor stacks must be checked for in the microcode
realizations of many instructions, those possibilities are ignored in this report,

Throughout this section, let T be the virtual processor executing the instruction specified, let | be the
instruction record containing the instruction, and let § be the stack record pointed to by the stack pointer
M.sp of M.

3.8. The CHA Instruction Cycle

fis is usual, the CMA instruction cycle consists of three successive phases: ({instruction fetch, instruction
pointer increment, and instruction execution. The instruction is fetched to an instruction register IR, which
is necessarily part of the processing unit housing the virtual processor T but is not considered part of T
itself since its content need never be saved with T for later restoration when T (s removed from the
processing unit. The bit lengths of individual machine instructions, although unspecified in this report, are
intended to vary with the instruction in a manner partially dependent on the expected frequency of occurrence
in normal coding; hence the amount by which the instruction pointer is incremented depends on the instruction
being fetched. Except for this minor complication, the first two phases are straightforwsrd; hence
descriptions are given below for only the execution phases, the first two phases being assumed already
completed.

3.1. Data Movement Between the Virtual Procassor Stack and Registers

The virtuval processor T has 16 working registers, 5 special registers, and the stack S. The 16 working
registers are denoted, in hexadecimal notation: R@ = 1.9, Rt =T.1, ..., RE = A.E, and RF = TI.F. The §
special registers are: M, lab = T,-1, M.sp = M.-2, M.dp = M.-3, M.pid = M.-4, M.ref = 1.-5. The parts of II. lab
which hold the instruction subpointer and the environment pointer are regarded as pseudo registers, are
denoted by TM.ip and M.ep, are called the instruction pointer register and environment pointer register of T,

and may be accessed by using special instructions. The stack pointer M.sp points to the stack 5, the
processor identity pointer T.pid points to I itself, the instruction pointer M.ip points into the instruction
record | immediately beyond the instruction just fetched, and the environment pointer Tl.ep designates the

current access environment of T. The display pointer T.dp either is null or is a pointer pointing to a vector
poly record DV called the display vector of T when present, the display vector DV contains (sub)pointers
pointing (in)te the execution contours in the access environment of M which M can utilize through special
display instructions to gain access to the subrecords of those execution contours. ALl movements of mono
records nithin the space composed of the 16 working registers, the 5 special registers, and the stack S either
take place within § itself or take place between S and some set of registers; these cases are treated
separately belon.

3.1.08, Data Movement Within the Virtual Procsssor Stack

Execution of these instructions affects only mono records near the top of S.

2@ nop no-operation
Execution of this instruction has a vacuous effect.

21 pop
a
b b
BEFORE AFTER
Execution of this instruction pops the top record from S.
22 dup » duplicate
a
a a
BEFORE AFTER

Execution of this instruction duplicates the top record of S.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 088 of 043

03 sup sHap
a b
b a
BEFORE AFTER
Execution of this instruction interchanges the top two records of S.
04 cab
a c
b a
c b

BEFORE AFTER
Execution of this instruction permutes the top three records of S so as to bring the third record to the top
of S.

25 beca

a
o

BEFORE AFTER
Execution of this instruction permutes the top three records of S so as to place the top record below the next
two records.

26 psh push constant

| |
psh; R; psh: R;
4+ a t R
M. ip M ip

BEFORE AFTER
This instruction must be followed in | by some mono record R. Execution of this instruction pushes a copy of
R onto S and increments T.ip by an amount equal to the byte length of R.

3.1.1. Data Movement Between Working Registers and the Stack

The contents of working registers can be saved to the stack S or be restored from the stack S, either singly
or in sets designated by register selectors. When a set of registers selected by a register selector M is
saved to the stack, the selector M is pushed on top of the selected register contents to be available for
controlling the later restoration of saved register contents to the same selected registers. Provision is
also made for one virtual processor to cause the saving of a selected set of another virtual processor’s
working registers.

29 sav Rn save register Rn, 0<n<16
Rn ; Rn -
: ;
BEFORE AFTER

Execution of the n-th one of these instructions, 9<n<16, pushes onto 5 a copy of the content of register Rn.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 88 Page 0089 of 043

81 res Rn restore register Rn, 8<n<16
Rn - Rn e
: c
BEFORE AFTER

Execution of the n-th one of these instructions, @<n<16, places into reister Rn a copy of the top record of §
and pops that top record from 5.

@2 xch Rn exchange register Rn, 0<n<ib
Rn Rn
=] C b]
b a
BEFORE AFTER

Execution of the n-th one of these instructions, 8¢n<i6, exchanges the contents of register Rn and the top
record of 5.

23 sav save selected registers
The top record of S must be a register selector M. Execution of this instruction comprises; first, M is

popped from S to a micro register; second, for 16>1>@ if M.i=1 then save Ri is effected; third, M is pushed
back onto S.
msk 080F

L . RUL 2 |

msk 009A R3 | b | b

BEFORE AFTER
A specific example of the execution of this instruction is illustrated above, with the 16-bit value of the
register selector M expressed as four hexadecimal digits.

04 res restore selected registers
The top record of S must be a register selector M. Execution of this instruction comprises; first, M is
popped from S to a microregister; second, for 16>12@ if M.i=1 then res Ri is effected. M is discarded rather
than replaced onto S.

Rt [__a__ | [msk 0@@A R []
e
RI[C_ b 1 [R3 d l |

BEFORE AFTER
A specific example of the execution of this instruction is illustrated above, with the 16-bit value of the
register selector M expressed as four hexadecimal digits.

@S tele save save selected registers of another virtual processor
The top record of S must be a pointer P pointing to a virtual processor T’ which is asleep and which has a
stack record S'; the second record of S must be a register selector M. Execution of this instruction
comprises: first, P is popped from S to a microregister to give T access to M'; second, a copy of M’ .sp (s
placed into a microregister to give I access to S'; third, M is popped from S to a microregister; fourth, for
16>1>8 if M.i=1 then a copy of the content of the register M.t of M is pushed onto §'; fifth, M is pushed
onto S'. The pointer P is discarded. -

n. nl
do] lse] |s’ (5] []~ 3
msk 000A
C e m. = _m.1| [a
b
o Jm.3 : 5 & mr.3
<|ptr
lab msk 0084 lab | |s
AFTER

BEFORE

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page @10 of 843

A specific example of the execution of this instruction is illustrated above, with the 16-bit value of the
register selector expressed as four hexadecimal digits.

26 clr Rn . clear register Rn, 08<n<16
Execution of the n-th one of these instructions, 8<n<16, places null into Rn.

97 clr clear selected registers
The top record of S must be a register selector M. Execution of this instruction comprises; first, M is
popped from S to a micro register; second, for 16>i>8 if M.i=! then null is placed into register Ri. M is
discarded.

R [a] R Coull]
R3I[b | [msk 900R R3 [mull | | |

BEFORE AFTER
a4 specific example of the execution of this instruction is illustrated above, with the 16-bit value of the
register selector M expressed as four hexadecimal digits.

3.1.2. Data Movement Between Special Registers and the Stack

The contents of certain special registers and pseodo registers can individually be saved to the stack S or
restored from the stack S.

29 xch sp exchange stack pointer
m 1l
dp [sp @l /s’ dp] [sp|—| BEE
sp
Lab ptr 5 lab | s

BEFORE AFTER
The top record of S must be a pointer P which points to a stack record S’ whose reference count is 1.
Execution of this instruction: copies the stack pointer M.sp to the stack pointer subrecord 5'.sp, and pops P
from S to the stack pointer register Il.sp.

21 rev sp revert stack pointer

m m _
|_do] [sp || |s dp]| [sp ‘Ll |s

lsp

Lab l s Lab | _|#

BEFORE AFTER
The stack pointer subrecord S.sp must be a pointer P which points to a stack record 5’ whose reference count
is 1. Execution of this instruction copies the stack pointer subrecord S.sp to the stack pointer register
M. sp.

22 xch dp exchange display pointer
M.dp R M.dp [ptr
%I— ptr ;] R
o | < |a ov | | 3
BEFORE AFTER

The top record of S must be a pointer P which points to a vector record OV whose reference count is 1.
Execution of this instruction: pops P from S to a microregister, pushes a copy of the content of the display
pointer register MM.dp onto S, and places the pointer P into the display pointer register Tl.dp.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 811 of 843

83 res dp ; restore display pointer
Mde [] : M.dp [ptr
o v | |] :
BEFORE AFTER

The top record of S must be a pointer P which points to a vector record OV whose reference count is 1.
Execution of this instruction: pops the pointer P from S to the display pointer register M.dp.

04 sav pid save virtual processor identity
m m
dp [*isp — dp | [sp | _J
3 ptr
[_etr | _ptr a
Lab Lab
BEFORE AFTER

Execution of this instruction pushes onto 5 a copy of the content of the processor identity register T.pid,
namely a pointer to T itself.

85 xch ip exchange instruction pointer
m m
dp [se |— dp | lsp |—
subptr subptr

, = . 1 1
iplep Ly 4 iplep | 4 ¥
1 3 b: 1 a: b:

BEFORE AFTER

The top record of S must be a subpointer P which points to an instruction within the current instruction
record |: the instruction subpointer T.ip, already incremented, also points to an instruction within 1.
Execution of this instruction exchanges the two subpointers P and T.ip.

26 res ip restore instruction pointer
m m _
dp [sp_|— dp] [sp|—I]
subptr
1
iplep | 4 4 iplep | §
B a: [L a: o:f
BEFORE AFTER
The top record of S must be a subpointer P which points to an instruction within the current instruction
record |. Execution of this instruction pops the subpointer P from S to the instruction pointer register
M. ip.
87 sav ep save environment pointer
m n
dp] [sp —L dp| [sp 1,
EP
ip]EP 3 ip|EP a
) BEFORE AFTER
The top record of S must be a subpointer P which points to an instruction within the current instruction
record |. Execution of this instruction pops the subpointer P from S to the instruction pointer register

M. ip.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 812 of 843

3.2. Scaler Data Manipulation Instructions

We describe in this section some of the instructions which produce a single output scaler mono record from
zero or more input mono records, both the input and output mono records being located at the top of the stack
S. In executing one of these instructions on behalf of T, the microcoded processing unit takes the following
steps: first, an instruction-dependent number (the degree of the instruction) of input mono records are popped
from 5 and placed into microregisters; second, a single output scaler mono record is produced from the input
records and placed into a microregister; third, the output record is pushed onto the stack S. Normal
execution of one of these instructions results in an output record having a tag specific to the instruction,
and may require conditions on at least the tags if not the values of the input records as well. For
simplicity in this report, we shall asume that all abnormal executions of these instructions result in the
production of null as the output record. In the following subsections we specify the normal execution of each
instruction by giving the normal tag for the output record, the degree of the instruction, any conditions
required of input records, and a recipe for construction of the value, val U, of the output record U from the
input records T (the top of stack record) and N (the next to top of stack record). The normal tag for the
output record and the degree of the instruction are generally incorporated into the subsection headings.

3.2.8. Null Producing Instructions

3,2.9.8. Degres @ Null Producing Instructions

29 mak null
This instruction is equivalent to the combination "psh; null”.

3.2.1. Tag Producing Instructions

3.2.1.0. Degree 8 Tag Producing Instructions

20 mak tag mmm mam € <type mono>

| | tag mmm

BEFORE AFTER
Execution of one of these instructions pushes onto S an output record U whose tag is "tag" and whose value is

the mono tag "mmm".

21 mak tag vp

tag vp new

BEFORE AFTER
Execution of one of these instructions pushes onto S an output record U whose tag is "tag” and whose value is
the poly tag “vp" with the state bits set to "nen".

22 imm mak tag ppp
|

imm mak tag ppp; int len;

vp ¥ ppp € <type poly>
|
imm mak tag ppp; int len;

4
M. ip M. ip
| | tag ppp int len
BEFORE AFTER
This instruction must be followed in | by an integer mono record having a non-negative value "len". Execution

of this tnstruction pushes onto 5 an output record U whose tag is "tag" and whose value is the poly tag "ppp

int len"”.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 813 of 043

3.2.1.1. Degree | Tag Producing Instructions

20 mak tag ppp i vp + ppp € <type poly>
|int len | tag ppp int len
BEFORE AFTER .
The top record T of S must be an integer mono record having a non-negative value "len". Execution of this

instruction pops T from S and pushes onto S an output record U whose tag is "tag” and whose value is the poly
tag "ppp int len".

81 tak tag

mmm val tag mmm

BEFORE AFTER
The top record T of S may be an arbitrary mono record. Execution of this instruction pops T from S and pushes
onto S an output mono record U whose tag is "tag" and whose value is the tag "mmm" of T.

22 ind tak tag

(sub)ptr —R tag rrr R
BEFORE AFTER
The top record T of S must be either a pointer to a poly record R or a subpointer to mono subrecord (not a
byte subrecord) R of some poly record. In either case, execution of this instruction pops T from S and pushes

onto S an output record U whose tag is "tag" and whose value is the tag "rrr" of the mono or poly record R.

3.2.2. Logical Producing Instructions

3.2.2.0. Degree § Logical Producing Instructions

09 mak false
This instruction is equivalent to the combination “psh; log f".

21 mak true
This instruction is equivalent to the combination "psh; log t".

3.2.2.1. Degree 1 Logical Producing Instructions

0@ not
T must be a logical mono record; val U = not (val T).

3.2.2.2. Degree 2 Logical Producing Instructions

90 xxx xxx € {and,or,xor,nand,nor,...}
Both N and T must be logical mono records; val U = (val N) xxx {val T).

3.2.2.2.8., Degrae 2 Arithmetic Relational Instructions

For each of these instructions both N and T must be integer mono records, while the normal output record is a
logical mono record.

20 gt greater than
[f {val N) > {val T) then U = log t ; otherwise, U = log f.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 88 Page 814 of 843

21 ge pp—— greater than or equal to
If (val N) > (val T) then U = log t ; otherwise, U = log f.

82 le less than or equal to
If (val N) € (val T) then U = log t ; otherwise, U = log f.

23 Lt less than
If (val N) < (val T) then U = log t ; othernise, U = log f.

24 eq equal to
If (val N) = {val T) then U = log t ; otherwise, U = log f.

@5 ne not equal to
If {val N) = {val T) then U = log f ; otherwise, U = log t.

3,2.2,2.1. Degree 2 General Relational Instructions

20 eq equal to

N and T may be mono records of any tupes. |f N and T are identical in both tag and value then U = log t ;
othernwise, U = log f.

21 ne not equal to
N and T may be mono records of any types. |f N and T are identical in both tag and value then U = Loq f
otherwise, U = log t.

22 ind eq indirect equal to
Either N and T must both be pointer mono records pointing to poly records Q and S or else N and T must both be
subpointer mono records pointing either to mono subrecords Q and S or to byte subrecords Q and S of arbitrary
poly records. |f Q and S are identical - as complete poly records , as mono records, or as single bytes -
then U = log t ; othernise, U = log f.

23 ind ne indirect not equal to
Either N and T must both be pointer mono records pointing to poly records @ and S or else N and T must both be
subpointer mono records pointing either to mono subrecords O and S or to byte subrecords Q and S of arbitrary
poly records. If Q and S are identical - as complete poly records , as mono records, or as single bytes -
then U = log f ; othernwise, U = log t.

3.2.3. Register Selector Producing Instructions

3.2.3.08. Degree @ Registér Selector Producing Instructions

20 mask none - select no registers
This instruction is equivalent to the combination "psh; msk 00898",

@1 mask all o select all registers
This instruction is equivalent to the combination "psh; msk FFFF".

3.2.3.1. Degree | Register Selector Producing Instructions

22 not comp lement
T must be a register selector; val U = not {val T) (the 1's complement).

3.2.3.2. Degree 2 Register Salector Producing Instructions

20 xxx R xxx € {and,or,xor,nand,nor,...}
N and T must both be register selectors; val U = (val N) xxx (val T) (each bit).

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 015 of 043

3.2.4., Integer Producing Instructions

3.2.4.0. Degree @ Integer Producing Instructions

0@ mak zero make the integer 0
This instruction is equivalent to the combination "psh; int @".

21 mak one make the integer |
This instruction is equivalent to the combination "psh; int 1".

@2 tak stk Llen take length of self stack record
The output record U is a copy of the integer length subrecord of the tag of S.

83 tak stk tos take top of stack index of self stack record
Execution of this instruction pushes onto S an output record U which is a copy of the top of stack index of §
as it was prior to the push.

3.2.4.1 Degree | Integer Producing Instructions

20 not comp lement
T must be an integer mono record; val U = not (val T) (the 1's complenment).

91 neg negative
T must be an integer mono record; val U = - (val T),

82 abs absolute value
T must be an integer mono record; val U = abs (val T).

@3 tak Llen take length of poly record

T must be a pointer mono record pointing to some poly record R. The output record U is a copy of the integer
length subrecord of the tag of R unless R is a virtual processor, in which case the output record U is the
integer mono record "int 16".

24 tak ref take reference count of poly record
T must be a pointer mono record pointing to some poly record R. The output record U is a copy of the integer
reference count subrecord of R.

05 tak tos take top of stack index of stack record
T must be a pointer mono record pointing to some stack record R different from S. The output record U is a
copy of the integer top of stack subrecord of R.

26 tele tak stk len take length of tele stack record
T must be a pointer mono record pointing to some virtual processor T' which is different from M and has a
stack record §'. The output record U is a copy of the integer length subrecord of the tag of S°.

87 tele tak stk tos take top of stack index of tele stack record
T must be a pointer mono record pointing to some virtual processor M which is different from T and has a
stack record S'. The output record U is a copy of the integer top of stack subrecord of the tag of 5'.

3.2.4.2. Deagree 2 Intsger Producing Instructions

For all of these instructions, both N and T must be integer mono records.

09 xxx ‘ xxx € {and,or,xor,nand,nor,...}
The values of N and T are treated as bits strings; val U = (val N) xxx (val T) (each bit).

21 add
val U = (val N) + (val T).

22 sub subtract
val U = (val N) - (val T).

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page @16 of 943

83 mpy multiply
val U = (val N) x (val T).
24 intdiv integer divide
T R
N Q

BEFORE AFTER

This instruction is non-standard in that its normal execution produces two output records rather than just
one, The value of T must be non-zero. Execution of this instruction pops both T and N from S to
microregisters, pushes -onto- $ a quotient integer mono record Q, and then pushes onte S a remainder integerrrr
mono record R. The values of Q and R are uniquely determined by the following two conditions: @ ¢ (val R) <
(abs (val T)) and val N = ((val T) x (val Q)) + (val R).

25 quot - integer division quotient
The value of T must be non-zero. This instruction is equivalent to the combination "intdiv: pop", and is a
standard instruction producing only one output record.

26 rem : integer division rematnder
The value of T must be non-zero. This instruction is equivalent to the combination "intdiv; swp; pop", and is
a standard instruction producing only one output record.

3.3. Record Allocation

Only poly records can be allocated; mono records occur only as subrecords of poly records. Existing poly
records can be duplicated and new poly records can be freshly allocated. ALl poly record allocations produce
records in the execution—component. New poly records are initialized during allocation according to their
types as follows. The state of a newly allocated virtual processor is new. The length of all yirtual
processors is 16, and hence the tag of a virtual processor does not incorporate a length subrecord. The
length of a poly record which is not a virtual processor must be supplied as an operand for the allocate
instruction, is incorporated into the tag of the poly record, and does not change during the lifetime of the
poly record. Allocation—of a poly record produces exactly one pointer to that poly record, and sets the
reference count of the poly record to 1 to reflect the existence of this one painter. Each character of a new
text record is set to null. The ep and all code butes of a new instruction record are set to null. The sp
and all value bytes of a new stack record are set to null; the tos subrecord is set equal to the length
subrecord to register—the emptiness of the new stack record., ALl non-special subrecords of a new vector
record are set to null. The ord, tag, ip, ep, and all non-special subrecords of a new program contour are set
to null. The dsp, sp, ap, ep, and all non-special subrecords of a new execution contour are set tu null. The
pid subrecord of a new virtual processor is set to be a pointe8.to the new virtual processor; this subrecord
of the virtual processer does not change during the lifetime of the virtual processor and is never reflected
in the reference count of the virtual processor. The dp, sp, lab, and all 16 werking registers of a new
virtual processor are set to null. The state of a virtual processor can be awake or asleep only if the label
register of the virtual processor contains an instruction label.

00 get stk get a new stack record
m - m

dp] [sp| dp] [se|—| s

§'.sp = null
iplep ip|ep 8" . len = int n

§'.tos = int n
§'.ref = int 1

| ! | ¥

get stk; int n get stk; int n

BEFORE AFTER

This instruction must be followed in | by an integer mono record N = int n whose value part n is non-negative.
The purpose of this instruction is to permit T to acquire an empty new stack record §' whose length is the
program constant n, regardless of whether or not IT already has a stack. Execution of this instruction fetches
a copy of N from | using the instruction pointer Tl.ip, increments T.ip by an amount equal to the byte length
of N, allocates a nen stack record S' whose length subrecord is a copy of N, and places a pointer to §' into

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 017 of 043
the stack pointer register Il.sp.
21 xch stk exchange stack record
n n
dp [sp_|—| s dp | [sp_|— |s*
lsp
iplep . iplep
I |s
| ¥ |
xch stk; int n xch stk; int n
BEFORE AFTER

This instruction must be followed in | by an integer mono record N = int n whose value part n is non-negative.
The purpose of this instruction is to permit M, upon entry into a new progranm module, to exchange to a new
empty stack record S’ whose length is the program constant n, and which is automatically Linke? to -the
previous stack record S to permit later stack reversion back to S upon module exit. Execution of this
instruction fetches a copy of N from | using the instruction pointer TM.ip, increments T.ip by an amount equal
to the byte length of N, allocates a new stack record S' whose length subrecord is a copy of N, places a copy
of T'.sp into the stack pointer subrecord $'.sp of S', and places a pointer to §' into the stack pointer
register T.sp.

@2 sav stk save duplicate of stack record with selected registers
m Il
dp]| lsp. |— 5 dp| Isp S
1 |a a
iplep | iplep 5
— msk mmmm
saved
| b o | ! regs
sav_stk; msk mmmm say stk; msk mmmm a
EC EC
(—-—
|SF sp
BEFORE AFTER

This instruction must be followed in | by a selector M = msk mmam; the environment pointer M.ep of T must be a
pointer pointing to some execution contour EC. The purpose of this instruction is to permit M, upon entry
into a contour module PC, to preserve via the stack pointer subrecord EC.sp for possible later use by a leap
instruction an exact duplicate of 5’ of its stack record S together with copies of registers specified to be
fixed during execution of PC. Execution of this instruction fetches a copy of M from | using the instruction
pointer M.ip, increments T.ip by an amount equal to the byte length of M, allocates an exact duplicate §' of
S, places a pointer to S’ into EC.sp via the environment pointer M.ep, performs relative to §' the register
saving actions of sav, and pushes a copy of M onto S’.

23 alocopy allocate copy of poly record
t fppp ooo......]
ptr —=>0Q(ppp cvinnn.. | ptr 1>R ——————
BEFORE AFTER

The top record T of S must be a pointer to some poly record Q. Execution of this instruction pops T from S to
a microregister, allocates a poly record R which is an exact copy of the record O with the two exceptions
noted below, and pushes onto S a pointer to the duplicate record R. Exceptions: (1) the reference count of R
is set to 1: (2) if O is a virtual processor, then the state of R is set to nem, R.pid is set to point to R
rather than to O, and both R.dp and R.sp are set to null.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 918 of 043

24 aloc vp - allocate virtuval processor
Execution of this instruction allocates a virtual processor record T’, sets the state of 11" to new, sets the
reference count of T' to 1, sets M.pid to point to M', sets all other registers of M to null, and pushes
onto § a pointer to ",

@5 imm aloc ppp immediate allocate poly record, vp # ppp € <type poly>
| R
—- : ptr —>[ppp_int n ...|
| |
imm aloc ppp; int n imm_aloc ppp; int n
M. ip M. ip
BEFORE AFTER

This instruction must be follwed in | by an integer mono record N = {nt n whose value part n (s non-negative.
Execution of this instruction fetches a copy of N from | using the instruction pointer T.ip, increments M. ip
by an amount equal to the byte length of N, allocates and properly initializes a nen poly record R of type ppp
whose length subrecord is a copy of N, and pushes onto S a pointer to the record R.

26 aloc ppp o allocate poly record, vp % ppp € <type poly>
R
int n ptr —>[ppp_int n_...|
BEFORE AFTER

The top record T of S must be an integer mono record T = int n nhose value part n is non-negative. Execution
of this instruction pops T from S to a micro register, allocates and properly initializes a new poly record R
of type ppp nhose length subrecord is a copy of T, and pushes onto S a pointer to the record R.

@7 aloc allocate poly record

tag PPP Ll ptr —>[ppP e, |

BEFORE AFTER
The top record T of S must be a tag record nhose value part is a poly record tag P; if P is a virtual
processor tag then the state of P is new. Execution of this instruction pops T from S to a micro register,
allocates and properly initializes a nen poly record R shose tag is a copy of the tag P, and pushes onto § a
pointer to the record R.

3.4. Pointer and Subpointer Operations: Selection and Index Modification

The instructions presented in this section capture most of the many address modification mechanisms found in
contemporary architectures. Automatic indirection is purposely not incorporated into the memory reference
instructions of CMAL: instead, intended access paths must be explicitly coded as CMAL instruction sequences.

The following types of operations involving pointers and subpointers can be performed using the instructions
described in this section. A break-subpointer instruction breaks apart a subpointer into its two constituent
parts: a pointer and an integer index. Six two-argument select instructions construct a subpointer from a
pointer and an integer index. Six three-argument modify-then-select instructions construct a subpointer from
a pointer and a register-resident integer index after applying an integer modification to the index, while six
three-argument select-then-modify instructions construct a subpointer from a pointer and a register-resident
integer index before applying an integer modification to the index. Three two-argument modify-then-select
instructions save a copy of a register-resident subpointer to the stack S after applying an integer
modification to the index portion of the subpointer, while three two-argument select-then-modify instructions
save a copy of a register-resident subpointer to the stack S before applying an integer modification to the
index portion of the subpointer. Finally, six two-argument modify instructions simply apply an integer
modification to the index portion of a subpointer which may be in a register or on the stack S.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE

3.4.0.

The Break-Subpointar Instruction

22 Jun 89

Page 819 of 043

80 brk subptr

R

CT T]

subptr @R x

+

1]

x-th subrecord

BEFORE

break subpointer

int x

ptr @R

R
[|
P

x-th subrecord

AFTER

The top record T of 5 must be a subpointer, the two constituent parts of whose value are: the value part @R of
a pointer P = ptr @R which points to some poly record R, and the value part x of an integer mono record X =
int x; the subpointer T thus points to the x-th subrecord of R. Execution of this instruction pops T from §
to.a microregister, constructs from T and pushes onto $ the pointer mono record P, and then constructs from T
and pushes onto S the integer mono record X.

3.4.1.

Each of the six select instructions requires two input mono records: first, a pointer P = ptr @R to some poly
record R; second, an integer index X = int x. The pointer P may be on the stack S or may be in some working
register Ri, 8<i<16. The index X may be an immediate operand in the instruction, may be an the stack S, or
may be in some working reister Rj, 0<j<16. Inputs which are on the stack S are denoted tn the instruction by
"%": gtack inputs are popped from the stack prior to formation of the output mono record. [f X is an
immediate operand then only its value x occurs within the instruction, coded as a short 2's-complement field.
Each select instruction pushes onto the stack S as its single output mono record the subpointer Q = subptr @R
x which points to the x-th subrecord of the poly record R.

The Two-Argument Pointer Selection Instructions

00 sel #,x P on stack, X immediate
) R R
Plptr 0 0|subptr t
e x=-th subrecord 1 !
BEFORE AFTER
21 sal *,# P on stack, X on stack
.) R R
int x__ (i]
Plptr $ 0|subptr b
— x~th subrecord ; —!
BEFORE AFTER

The pointer P

must be below

the tndex X, as shown; compare

"brk subptr", 3.4.9.08.

02 sel *,Rj P on stack, X in Rj, 8<j<16
Rj Rj
Plptr [int x | Q[subptr [int x]
1
1
R R

S UG

BEFORE

x-th subrecord

AFTER

CL T

CONTOUR HODEL ARCHITECTURE and ASSEMBLY LANGUAGE

22 Jun 89 Page 020 of 043

23 sel Ri,x

Ri

Platr]

P in Ri, 0<i<16, X immediate

(=]

subptr
1

Ri R 4

Pltr | LT

x-th subrecord

BEFORE AFTER
04 sel Ri,* P in Ri, @<i<16, X on stack
X|int x Q|subptr
L |
Ri R Ri R
Plotr] 1 Platr] C 111

BEFORE

x-th subrecord

AFTER

25 sel Ri,Rj

Jxl%ﬂ—\

Ri

Platr]

R

]

BEFORE

P in Ri, X in Rj, 0<1,j<1b

Rj
0[subptr X[int x |
Ri | R I
L ¥
Pltr] —[[T
1

x=th subrecord

AFTER

3,4.2, The Three-Argument Pointer Selection and Index Modification Instructions

Each of the six three-argument modsel (modify-index-then-select-pointer) instructions and each of the six
three-argument selmod (select-pointer-then-modify-index) instructions requires three input mono records:
first, a pointer P = ptr @R to some poly record R; second, a register-resident integer index X = int x; third,
an integer index modifier M = int m. The pointer P may be on the stack S or may be in some working reister
Ri, @<i<16. The integer index modifier M may be an immediate operand within the instruction, may be on the
stack S, or may be in some working register Rk, 0<k<i16. Inputs which are on the stack S are denoted in the
instruction by "%"; stack inputs are popped from the stack prior to formation of the output mono record. If M
is an immediate operand then only its value m occurs within the instruction, coded as a short 2's complement
field. Each modsel instruction first forms within the register Rj the modified index Y = int y, in which y =
x+m, and then pushes onto the stack S as its single output mono record the subpointer 0 = subpointer @R y
which points to th y-th subrecord of the poly record R. Each selmod instruction first pushes onto the stack S
as its sinle output mono record the subpointer Q = subptr @R x which points to the x-th subrecord of the poly
record R, and then forms within the register Rj the modified index Y = int y, in which y = x+m.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE

22 Jun 89

Page 021 of 043

2@ modsel *,Rj,m

P on stack, M immediate

Plptr XI?;t X | 0{subptr | YlT;t x+tm |
F
I :?:l:]
(x+m)-th subrecord —
BEFORE AFTER
81 selmod *,Rj,m P on stack, M immediate
Rj Rj
Plptr X[int x] 0(subptr 1 Y[int x+n |
k :
] I:T:[]
x-th subrecord)
BEFORE AFTER
82 modsel #,Rj,* P on stack, M on stack
Mlint M Rj Rj
Plptr X[int x] Q[subptr | Y[int x+m |
- [_} R R 1
] :+:D
(x+m)-th subrecord '
- BEFORE AFTER
B3 selmod #*,Rj,* P aon stack, M on stack
Mlint m Rj Rj
Plptr X[int x | 0[subptr : Y[int x*tn |
1_§ R R 1
— - ——
x-th subrecord .
BEFORE AFTER
@4 modsel #,Rj,Rk P on stack, M in Rk, 8<k<1B
. T
Plptr X[?;t X | 0{subptr | Y]?;t xtm |
1_§ R R 1
L 1] I_—_T_—_El
(x+m)-th subrecord 4
BEFORE AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE

22 Jun 89

Page 022 of 043

B5 selmod *,Rj,Rk

P on stack, M in Rk, 8<k<16

Rk Rk
Mintn] Mnt n]
Rj Rj
Plptr X[int x] 0|subptr Y[int x+m |
1
|
1_) R R
] :+:D
x-th subrecord !
BEFORE AFTER
26 modsel Ri,Rj.m P in Ri, @<i<16, M immediate
Rj Rj
| | x[int x Q[subptr Y[int x+m |
I 1
Ri R Ri R
Plotr] 1 Pltr] S ———
AT.
(x+m)-th subrecord '
BEFORE AFTER
27 selmod Ri,Rj,m P in Ri, 0<i<16, M immediate
Rj Rj
| | X[int x] Q[subptr I Y[int x+n |
1
Ri R Ri R 4
Pletr] >] Plotr] L [
x=th subrecord
BEFORE AFTER
08 modsel Ri,Rj,* P in Ri, 8<i<i6, M on stack
Rj Rj
Mlint X|int x | Q|subptr Y[int x+n |
Ri R Ri i R ;
L L v
Sri— S E— dra— -
(x+m)-th subrecord J
BEFORE AFTER
29 selmod Ri,Rj,* P in Ri, 8<i<16, M on stack
Rj Rj
Mlint m X[int x | Q|subptr Y[int x+n |
' 1
Ri R Ri R
Plotr] 1 Pletr] i:l:l

BEFORE

]

x-th subrecord

AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 823 of 043

10 modsel Ri,Rj,Rk P in Ri, M in Rk, 0<i,k<1b

it e
| | x 0(subptr Y1|§|J1t x+n_|

Ri R Ri R 4
Platr] — Jrra— -

(x+m)-th subrecord 1

o BEFORE AFTER
11 selmod Ri,Rj,Rk P in Ri, M in Rk, 8¢i,k<16

7 H H
I | xl%T‘x“l 0[subptr vlsujn xtn_ |

Ri R Ri R 4

Platr] I Platr] L T

A

]

x-th subrecord

BEFORE AFTER

3.4.3. The THo-Argument Subpointsr Index Modification and Selection Instructions

Each of the three two-argument modsel (modify-subpointer-index-then-salect) instructions and each of the three
two-argument selmod (select-then-modify-subpointer-index) instructions requires two input mono records: first,
a register-resident subpointer P = subptr @R x which points to the x-th subrecord of some poly record R;
second, an integer index modifier M = int m. The subpoiner P must be in some working register Ri, @<i<i6.
The integer index modifier M may be an immediate operand in the instruction, may be on the stack S, or may be
in some workin register Rj, @<j<16. An input which is on the stack S is denoted in the instruction by "*"; a
stack input (s popped from the stack prior to formation of the output mono record. |f M is an immediate
operand then only its value m occurs within the instruction, coded as a short 2’'s complement field., ch modsel
instruction forms within the register Rt the modified subpointer Q = subptr @8R y, in which y = x+m and which
points to the y-th subrecord of the poly record R, and then pushes onto the stack S as its single output mono
record a copy of the subpointer 0. Each selmod instruction first pushes onto the stack S as its single output
mono record a copy of the subpointer P, and then forms within the register Ri the modified subpointer Q =
subptr @R y, in which y = x+m and which points to the y-th subrecord of the poly record R.

09 modsel Ri,m M immediate
Ri Ri
| | P[subptr Q[subptr 1 Q[%ﬁbptr |
= T
R] |
L] [T 1 l i |
.1\ T F S A
x-th sub———— x-th supb————
(x+m)-th subrecord (x+m)-th subrecord

BEFORE AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE

22 Jun 89 Page 024 of 043

21 selmod Ri,m

M immediate

' Ri Ri
l | p[subptr | Plsubptr Q[subptr |
R i—' : 1 [:
[T]] -
x-th sub———! x-th supb————!
(x+m)-th subrecord (x+m)-th subrecord
BEFORE AFTER
22 modsel Ri,# M on stack
Ri Ri
M{int m Plsubptr | Q[subptr 0[subptr |
1 t J
R
| I | [| | |
Jr FS 4 T
x-th supb——— x-th sup—————
(x+m)-th subrecord (x+m)-th subrecord
BEFORE ‘RFTER
23 selmod Ri,* M on stack
Ri R
Mlint m P!subgtr P|subptr a[subptr |
R — —
L |] { L | |
x-th supb—! x-th sypb—
(x*m)-th subrecord (x+m)-th subrecord
BEFORE AFTER
84 modsel Ri,Rj M in Rj, 0<j<16
Rj Rj
- -
Ri Ri
| P[subptr 0|subptr 1 QI?ubptr___j
— t
R L ,
L | [| | i | | []
4 * + b
x-th sub———— x-th sub—
(x+m)-th subrecord (x+m)-th subrecord
BEFORE AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 88 Page 025 of 043

05 selmod Ri,Rj M in Rj, 8£j<16
Rj Rj
Wit] .
Ri Ri
| | P[subptr | P|subptr a[subptr |
. F—"—____J L-__'______1 r“j__
I [| L | |
,1\ h ﬂ\ A
x-th supb— x-th supb——
(x+m)-th subrecord (x+m)-th subrecord
BEFORE AFTER

3.4.4, The Two-Argument Subpointer Index Modification Instructions

Fach of the six two-argument modsub (modify-subpointer-index) instructions requires two input mono records:
first, a subpointer P = subptr BR x which points to the x-th subrecord of some poly record R; second, an
integer index modifier M = int m. The subpoiner P may be on the stack S or may be in some working register
Ri, 8<i<16. The integer index modifier M may be an immediate operand Within the instruction, may be on the
stack 5, or may be in some workin register Rj, @<j<i6. An input which is on the stack S is denoted in the
instruction by "*": stack inputs are popped from the stack prior to formation of the output mono record. 1f M
is an immediate operand then only its value m occurs within the instruction, coded as a short 2's complement
field. FEach modsub instruction forms as its single output mono record the subpointer Q = subptr @R y, in
which y = x+m and which points to the y-th subrecord of the poly record R. [|f P had been on the stack S then
the output record 0 is pushed onto S. |f P had been in some working register Ri then the output record Q is
placed into Ri.

22 modsub *,m P on stack, M immediate
P|subptr 0[subptr
l | ! |
R b b
| [] | | [|
3 rS FS 1-
x-th supb— x-th supb————
(x+m)-th subrecord (x+m)=th subrecord
BEFORE AFTER
21 modsub *,¥ P on stack, M on stack
M{int m
P|subptr Q{subptr
; | : 1
R y
L[[T] L[1 | |
4 4 T 4
x-th syb———— x-th syp———
(x+m)-th subrecord (x+m)-th subrecord

BEFORE AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 026 of 0843

22 modsub *,Rj P on stack, M in Rj, 0<j<16
' Rj Rj
P ?ubptr Mlint | 0 ?ubpfr Mlintm |
| 1
R y b 4
[[1] L1 1 []
A T 1. A
x-th sup——m— x-th syp———
{x+m)-th subrecord (x+m)-th subrecord
BEFORE AFTER
03 modsub Ri,m R P in Ri, B<i<16, M immediate
Ri Ri
P subptr] o[subtr]
1 |
R A
| - s
x-th sub——rj x-th sup——!
(x+m)-th subrecord (x+m)-th subrecord
BEFORE . AFTER
24 modsub Ri,* P in Ri, 0<i<16, M on stack
Ri Ri
Pl?ubptr T W[int n Q ?ubptr L.
| 1
R b 1
I 1!\ [[] [l []
1. A A
x-th supb—— x-th sub———
(x+m)=th subrecord (x+m)=th subrecord
BEFORE AFTER
25 modsub Ri,Rj P in Ri, M in Rj, 0<i,j<16
Ri Rj Ri Rj
Plfubptr] M[int n] Dl?ubptr | M|lint m :
| 1
R |
!] I
x-th supb——— x-th sup————
(x+m)-th subrecord (x+m)-th subrecord
BEFORE AFTER

3.5. Display Related Instructions

In this section we assume that the virtual processor 1 has a display vector DV; that is, the display pointer
register T.dp contains a_pointer P = ptr BOV pointing to the vector poly record OV. It is convenient to have
specialized instructions both to maintain the display vector and to provide M direct efficient use of the
display vector in realizing access via identifiers. We describe below both : one-argument display
instructions for fetching from and storing into the display vector DV, and two-argument display instructions
which produce subpointers pointing into execution contours pointed to by subrecords of the display vector DV.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 827 of 843

3.5.8. Display Vector Fetch Instructions

Each of the three one-argument fet dsp (fetch-from-display-vector) instructions requires one input mono
record: an integer index X = int x. The integer index X may be an immediate operand in the instruction, may
be on the stack S, or may be in some working register Ri, @<i<16. An input which is on the stack 5 is denoted
in the instruction by "#": a stack input is popped from the stack prior to formation of the output mono
record. |f X is an immediate operand then only its value x occurs within the instructien, coded as a short
2's complement field. Each fet dsp instruction pushes onto the stack S aits single output mono record a copy
Q of the x-th subrecord DV.x of the display vector DV.

00 fet dsp x x immediate
| | Qla
oV v
i ﬂ.dp—>:£:] M _[a | |
x-th subrecord I x-th subrecord “T
BEFORE AFTER
01 fet dsp # x on stack
xLint x Qla
DV v i
Mdp—————— [2] n.dp—-—-——>[::E|:]
x-th subrecord T x-th subrecord ‘j
7 BEFORE AFTER
@2 fet dsp Ri x in Ri, 0<i«i6

Ri
I | X[int x 0la

v

v i
Map————[1] ﬂ.dp—_""—"' -

J

x-th subrecord x-th subrecord

BEFORE AFTER

3.5.1. Display Vector Stors Instructions

Each of the three one-argument sto dsp (store-into-display-vector) instructions requires two input mono
records: first, a mono record P which is either null or is a (sub)pointer pointing (in)to some execution
contour: second, an integer index X = int x. The mono record P must be on the stack S. The integer index X
may be an immediate operand in the instruction, may be on the stack S, or may be in some working register Ri,
0<i<16. An input dhich is on the stack S is denoted in the instruction by "¥"; a stack input is popped from
the stack prior to formation of the output mono record. |If X is an immediate operand then only its value x
occurs nithin the instruction, coded as a short 2's complement field. Each sto dsp instruction stores the
input record P into the x-th subrecord OV.x of th display vector DV,

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 88 Page 028 of 043

0@ sto dsp x x immediate

DV DV i
Mdp—————>[_[a [| Mep——>[_[PT]
4)

]

x-th subrecord x-th subrecord

BEFORE AFTER
01 sto dsp # x on stack
X|int x
P |
ov DV
M. dp——— [:E:I M.dp——> I:\F ;
x-th subrecord : x-th subrecord
BEFORE AFTER
82 sto dsp Ri _ x in Ri, 0<i<16
Ri Ri

P X[int x] | X[int x

Dv

oV '
Mdp——————[_ Ta [] T I [
+

h

| J

x-th subrecord x-th subrecord

BEFORE AFTER

3.5.2. Display Instructions for Accessing Into Execution Contours

Each of the nine two-arqument dsp (access-via-display) instructions requires two input mono records: first, an
integer display vector index X = int x; second, an integer execution contour index Y = int y. The integer.
index X (resp. Y) may be an immediate operand in the instruction, may be on the stack S, or may be in some
working register Ri, 8<i<16 (resp. Rj, 8¢j<16). An input which is on the stack S is denoted in the
instruction by "¥": a stack input is popped from the stack prior to the formation of the output mono record.
If X (resp. Y) is an immediate operand then only its value x occurs within the instruction, coded as a short
2's complement field. The x-th subrecord of the display vector DV must be a pointer P = ptr BEC which points
to some execution contour EC. Each dsp instruction fetches the pointer P from the display vector DV, forms
from P the subpointer O = subptr @EC y which points to the y-th subrecord of the execution contour EC, and
pushes @ onto the stack S as its single output mono record.

29 dsp x,y X immediate, Y immediate
| | Q{subptr 1
y-th subrecord | y-th subrecord 1
- —— -
—_—
oV P pyv P
| [ptr | | | [ptr |]
4 i
L—x-th subrecord L—x-th subrecord

BEFORE AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE

22 Jun 89 Page 829 of 043

21 dsp x,* X immediate, Y on stack
Y{int y Q{subptr 1
y-th subrecord 1 y-th subrecord
-~ EC EC _
- —ﬂ:tD —L [|
oV P DV P .
I [ptr | | C Tptr] |
i 4
L—x-th subrecord L—x-th subrecord
BEFORE AFTER
02 dsp x,Rj X immediate, Y in Rj, 0<j<16
Rj Rj
vty] [ty]
| | Q|subptr]
y-th subrecord | y-th subrecord
_ EC EC ¢ _
— |] ——-——————-—9|
oy P DV P
I [ptr | | [[ptr | i
4 4
L—x-th subrecord L—x-th subrecord
BEFORE AFTER
03 dsp #,y X on stack, Y immediate
Xlint x Q|subptr 1
y-th subrecord 1 y-th subrecord
. EC EC ¢ _
- a1 —[[T]
oV P Y P
I [ptr | | | [ptr | |
4 +
L—x-th subrecord L—x-th subrecord
BEFORE AFTER
04 dsp #,% X on stack, Y on stack
Y[{int y
X[int x Q|subptr 1
y-th subrecord 1 y-th subrecord]
EC EC)
——— T — [[T 1]
ov P oV P
l [ptr |] | [ptr | |

4
L—x-th subrecord

BEFORE

4
L—x-th subrecord

AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE

22 Jun 89 Page 030 of 043

25 dsp #,Rj X on stack, Y in Rj, 0¢j<16
Rj Rj
Y[int y | Y[int u |
Xlint x Q(subptr 1
y-th subrecord 1 y-th subrecord 1
- - EC } EC .
———— [[T 1] E— []
Dy P LY P
I [ptr | | I [ptr | |
+ +
L—x-th subrecord L—y-th subrecord
- BEFORE AFTER -
@6 dsp Ri,y X in Ri, B<i<16, Y immediate
| | 0(subptr i
y-th subrecord 1 y-th subrecord 1
Ri : EC Ri EC 4 }
X[t x] m— [[T 1] X(intx] —m[1 T]
Y P DV P
l [ptr | | | [ptr | |
+ +
L—x-th subrecord L—x-th subrecord
B BEFORE AFTER
07 dsp Ri,* X in Ri, B<i<16, Y on stack
Ylint y Qlsubptr 1
y-th subrecord 1 y-th subrecord]
Ri - £C Ri EC 4 .
xlntx] ——— 11T 1 Xty] —— 1T]
LY P ov P
[[ptr | | L [ptr | |
+ 4

L—x-th subrecord

BEFORE

L—x-th subrecord

AFTER

28 dsp Ri,Rj

| J

y-th subrecord 1

Ri , EC
X[nt x| C 1T 1
oV P
I [ptr | |
3

L—x-th subrecord

BEFORE

X in Ri, Y in Rj, 0<i,j<16

Yi?nt y

0|subptr 1
y-th subrecord |
Ri EC | B
X(ntx | —m 1T]
LY, P
{ [ptr | i
4

L—x-th subrecord

AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun B89 Page 031 of 043

3.6. Label Manipulation Instructions

There are in CMA three types of label mono records: the instruction label {i-lab), the instruction procedure
label (ip-lab), and the contour procedure label (cp-lab). The value of an instruction label IL s the
concatenation of an instruction pointer IP and an environment pointer EP (({ee 1.8.26); IP must be a
subpointer of non-negative index which points into some instruction record | having environment pointer
subrecord |.ep, nhile EP must either be null or be a pointer which points to some execution contour EC whose
antecedent pointer subrecord EC.ap necessarily points to some program contour PC; if EP is null then |.ep must
be null, while if EP is non-null and points to EC then |.ep must be non-null and must point to PC. The value
of an instruction procedure label IPL is the concatenation of an instruction pointer IP and an environment
pointer EP (see 1.0.27); IP must be a pointer which points to some instruction record | having environment
pointer subrecord |.ep, while EP must either be null or be a pointer which points to some execution contour EC
ahose antecedent pointer subrecord EC.ap necessarily points to some program contour PC; if EP is null then
|.ep must be null, while if EP is non-null and points to EC then |.ep must be non-null and must point to PC.
The value of a conour procedure label CPL is the concatenation of a contour pointer CP and an environment
pointer EP (see 1.8.28): CP must be a pointer which points to some program contour PC, while EP must either be
null or be a pointer which points to some execution contour EC; no other conditions need be met by CP and EP.
The microcode realizations of those instructions described below which construct label mono records must check
that the applicable conditions are met. CMAL contains both instructions which make labels from their
constituent parts and instructions which break labels into their constituent parts.

80 brk i-lab break instruction label

IP
IL|i-lab [P EP EP

BEFORE AFTER
The top record of the stack S must be an instruction label IL whose value consists of an instruction pointer
IP and an environment pointer EP. Execution of this instruction comprises: first, IL is popped from S to a
microregister; second; a copy of EP is pushed onto S; third, a copy of IP is pushed onto S.

@1 brk ip-lab break instruction procedure label

|P
[PL]ip-lab IP EP EP

BEFORE AFTER
The top record of the stack S must be an instruction procedure label IPL whose value consists of an
instruction pointer IP and an environment pointer EP, Execution of this instruction comprises: first, IPL is
popped from S to a microregister; second; a copy of EP is pushed onto S; third, a copy of IP is pushed onto S.

@2 brk cp-lab break contour procedure label

cP
CPL[cp-lab CP EP EP

BEFORE AFTER
The top record of the stack § must be an contour procedure label CPL whose value consists of a contour pointer
CP and an environment pointer EP. Execution of this instruction comprises: first, CPL is popped from S to a
microregister; second; a copy of EP is pushed onto S; third, a copy of CP is pushed onto 5.

23 mak i-lab - make instruction label

IP
EP IL|i-lab [P EP

BEFORE AFTER
The top record of the stack $ must be an instruction pointer IP which is a subpointer of non-negative index,
while the next-to-top record of S must be an environment pointer EP. Execution of this instruction comprises:
first, both IP and EP are popped from S to microregisters; second, checks are made to ensure that IP and EP
satisfy the conditions described above; third, an instruction label IL whose value consists of copies of IP

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 032 of 043

and EP is formed and pushed onto S.

24 mak ip-lab make instruction procedure label

1P
EP IPL|ip-Llab IP EP

BEFORE - AFTER
The top record of the stack S must be an instruction pointer IP which is a pointer, while the next-to-top
record of S nust be an environment pointer EP. Execution of this instruction comprises: first, both IP and EP
are popped from S to microregisters; second, checks are made to ensure that IP and EP satisfy the conditions
described above; third, an instruction procedure label IPL whose value consists of copies of [P and EP is
formed and pushed onto S.

@5 mak cp-lab make contour procedure label

cp
EP CPL|cp-lab CP EP

BEFORE AFTER
The top record of the stack S must be a contour pointer CP, while the next-to-top record of S must be an
environment pointer EP. Execution of this instruction comprises: first, both CP and EP are popped from S to
microregisters; second, checks are made to ensure that CP and EP satisfy the conditions described above;
third, a contour procedure label CPL whose value consists of copies of CP and EP is formed and pushed onto S.

3,.7. Data Movement Between the Virtual Procsssor and Memory

Only mono records can be moved between the virtual processor Tl and memory. Each such movement of a mono
record R occurs specifically between the stack S of T and some poly record G. The fet (fetch-to-stack)
instruction provides for moving the mono record R from a source in the poly record Q and pushing R onto the
stack S. The sto (store-from-stack) and stor (store-reverse-from-stack) instructions provide for popping the
mono record R from the stack S and moving R to its destination within the poly record Q. The source or
destination for the mone record R within the poly record Q must be designated either by a stack-resident
pointer P which points to Q or by a stack-resident subpointer P which points into 0, as described belon. The
fetch instruction fet requires one stack-resident input mono record: as the top record of 5, the (sub)potinter
P. The store instruction sto requires two stack-resident input mono records: first, as the top record of §,
the (sub)pointer P; second, as the next-to-top record of S, the mono record R. The store-reverse instruction
stor requires two stack-resident input mono records: first, as the top record of S, the mono record R; second,
as the next-to-top record of G, the the {sub)pointer P. Both the fetch and the store instructions pop their
input mono records from the stack S to microregisters prior to completing their activities. When the poly
record 0 is a text, instruction, or stack record, special actions are required as described belon.

20 fet fetch and transform byte from text or instruction record
|
Psubptr ey Rlint b ;
e - -
BEFORE AFTER

¥ the top record P of the stack S is a subpointer of non-negative index m which points into a text or
instruction record O then m must be less than the length of Q and P points to some text byte B within the
value part of Q. Under these conditions, execution of this instruction comprises: first, P is popped from S
to a microregister; second, an integer mono record R = int b, whose value contains a right-justified copy of B
and is left-filled with @ bits, is formed and pushed onto S.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 033 of @43

20 fet fetch mono record from stack record using pointer

Plptr R
W_ 1, d
R .
BEFORE | AFTER

If the top record P of the stack S is a pointer which points to a poly record Q then Q must be a non-empty
stack record which is not attached to any virtual processor. Under these conditions, execution of this
instruction comprises; first, P is popped from S to a microregister; second, the top mono record R of the
stack record 0 is popped from Q and pushed onto S.

20 fet fetch mono record using subpointer
Plsubptr ———— R
N Q Q
- — Tr[]
BEFORE AFTER

If the top record P of the stack S is a subpointer of index m which points into a poly record Q, and if it is
not the case both that m>3 and that Q is either a text record or an instruction record, then the folloning
conditions must hold: if m<@ then m is the index of some special subrecord of Q; if m>@ then m is less than
the length of Q@ and O is not a stack record; if Q is a virtual processor then Q is not awake and P does not
point at either the display pointer register of O or the stack pointer register of Q. Under these conditions,
the subpointer P points to some subrecord R of O and execution of this instruction comprises: first, P is
popped from S to a microregister; second, a copy of R is pushed onto S.

21 sto transform and store byte into text or instruction record
Plsubptr ‘
N[Tnt b | |
_ Q Q
o - — T8]

BEFORE AFTER
If the top record P of the stack S is a subpointer of non-negative index m which points into a text or
instruction record @ then the following conditions must hold: Q is in the execution component; m is less than
the length of Q: P points to some byte C in the value part of 0; and the next-to-top record in S must be an
integer mono record N = int b. Under these conditions, execution of this instruction comprises: first, both P
and N are popped from S to microregisters; second, the byte C within Q is overwritten with a byte B nhich is a
copy of the rightmost eight bits of the value b of N.

21 sto store mono record into stack record using pointer

Plptr
R

1 |]
Q Q

BEFORE AFTER
If the top record P of the stack S5 is a pointer which points to a poly record Q then the folloning conditions
must hold: 0 is in the execution component: Q is a stack record which is not attached to any virtual
processor; the next-to-top record in S can be an arbitrary mono record R; and 0 is suffictently non-full that
it can accept a copy of R. Under these conditions, execution of this instruction comprises: first, both P and
R are popped from S to microregisters; second, a copy of R is pushed onto 0.

R

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 034 of 043

21 sto store mono record using subpointer
Plsubptr
R |
a | 0
- C_ 1Al T®rRT]
BEFORE . AFTER

If the top record P of the stack S is a subpointer of index m which points into a poly record Q, and that it
is not the case both that m>@ and that Q is either a text record or an instruction record, then the following
conditions must hold: O is in the execution component; if m<@ then m is the index of some special subrecord of
Q0 which is writeable (that is: not the length subrecord, not the reference subrecord, not the tos subrecord of
a stack record, and not-the pid subrecord of a virtual processor); if m>@ then m is less than the length of Q
and Q is not a stack record; if O is a virtual processor then Q is not awake; and the next-to-top record in S
can be an arbitrary mono record R, except that only an instruction label can be stored into the label reister
of a virtual processor. Under these conditions, execution of this instruction comprises: first, P and R are
popped from S to microregisters; second, a copy of R is stored into the m-th subrecord of Q.

02 stor reverse store

This instruction is equivalent to the combination "swp; sto".

3.8. Control Instructions

Control instructions are used to realize the following types of control activities: branches from within an
instruction record to points within the same instruction record; leap's (goto's) to sites of activity
determined by instruction labels; module entry and exit; and virtual processor state modification.

3.8.0. Branches

The CMAL representation of the instruction stream portion’of an instruction record comprises a sequence of
CMAL instructions optionally labelled by identifier-colon pairs. The five instructions defined below provide
both for conditional and unconditional branching and for subroutine calling, to points within the current
instruction record which are designated either statically by identifier-colon label pairs or dynamically by
previosly obtained instruction labels,

08 b GL branch unconditionally to the instruction labelled L
There must be a unique instrution T within | which is labelled L. Execution of this instruction causes the
instruction pointer of T to be changed unconditionally to point to the target instruction T.

21 bt GL branch if true to the instruction labelled L
There must be a unique instrution T within | which is labelled L, and the top record R of the stack S must be
a logical mono record. Execution of this instruction pops R from S to a microregister; if R is log t then the
instruction pointer of T is changed to point to T; if R is log f then the instruction pointer of T is left
pointing to the instruction immediately following the branch.

@2 bf 6L branch if false to the instruction labelled L
There must be a unique instrution T within | which is labelled L, and the top record R of the stack S must be
a logical mono record. Execution of this instruction pops R from S to a microregister; if R is log f then the
instruction pointer of T is changed to point to T; if R is log t then the instruction pointer of T is left
pointing to the instruction immediately following the branch.

23 jmp unconditional jump
This instruction is identical to the "res ip" instruction defined in 3.1.2.06.

24 jsb unconditional subroutine call
This instruction is identical to the "xch ip" instruction defined in 3.1.2.05.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 935 of 043

3.8.1. Leaps

A virtual processor which leaps or is coerced to leap (by tele leap) finds its label register loaded wnith a
new instruction label which may cause continuation of execution activity at a site arbitrarily remote from the
site of activity obtained just prior to the Lleap. Leaps must be used carefully and with elaborate
preparations since in general both the stack environment and the access environment of a leaping virtual
processor are changed by the leap, Since there is in essence one and only one correct stack management
strategy (as explained elsewhere), the leap instructions below incorporate a straightforward stack acquisition
tactic in support of that strategy; careful coding is required to provide advance preservation of an
appropriate stack record to be duplicated by the stack acquisition tactic. By contrast, display vector usages
are highly varied and hence the leap instructions below incorporate no display vector actions; display update
must be effected by coding at the site of the leap or tele leap instruction.

20 leap

The top record of the stack 5 must be an instruction label IL whose value consists of an instruction pointer
IP and a non-null environment pointer EP which must satisfy the following conditions. I[P is a sub-pointerrrof
non-ngative index which points to an instuction within some instruction record | whose environment pointer
l.ep is non-null and points to some program contour PC; the instruction pointesubrecord PC.ip points to I. EP
points to some execution contour EC whose antecedent pointer EC.ap points to PC. The stack pointer subrecord
EC.sp of EC is non-null and points to some stack record R which has as its top record a register selector M;
below M in R are mono records which have been saved from registers in accordance with the value of M.
Execution of this instruction comprises: first, IL is popped from S to a microregister; second, checks are
made to ensure that the above conditions are met; third, a duplicate R’ of the stack record R is allocated,
the reference count of R’ is set to 1, and a pointer to R' is placed into the stack pointer register M.sp of
M; fourth, the steps of res are performed; fifth, a copy of IL is placed into the instruction label register
M. lab of M.

S
i-lab [P EP 5| |
. | L .
dp] sp_ || ' dp] [sp |—=R’|
registers restored
R registers R
] (M M
lab saved Lab saved
regs IP [EP regs
% | 4
I] 1
L: <« L
ep| + | ep| *
PC § lip EC) sp PC { lip ECY sp
| e | L |1
ap ap

BEFORE AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 036 of 0843

01 tele leap coerce another virtual processor to leap
The top record of the stack S must be an instruction label IL whose value consists of an instruction pointer
IP and a non-null environment pointer EP which must satisfy exactly the same conditions as for the leap (see
3.8.1.00). The next-to-top record of the stack S must be a pointer P to a virtual processor M which s
necessarily distinct from T and whose state is either new or asleep. Execution of this instruction comprises:
first, both IL and P are popped from S to a microregisters; second, checks are made to ensure that the above
conditions are met; third, a duplicate R’ of the stack record R is allocated, the reference count of R’ is set
to 1, and a pointer to R’ is placed into the stack pointer register M".sp of M"; fourth, the steps of res are
performed as though by M', namely, the saved register contents are popped from R’ to the registers of T
rather then of T: fifth, a copy of IL is placed into the instruction label register T’.lab of M ; the state of
M is not altered.

H.sp—] : M.sp
IL{i-lab [P EP }
—P(pir S|

: i
m — m
dp| sp dp | [sp_|—R'|
registers restored
R registers R
M il
lab saved Lab saved
regs |P |EP regs
4 | i
I | t
L: <« L:
ep| * ep| +
PC 4 |ip ECy sp PC § | ip ECY sp
| =] _ | I | «—| |
ap ap
~ BEFORE AFTER

3,8.2. Tele Display Vector Instructions

3,8.2.0. Tele Display Yector Fetch Instructions

Each of the three one-argument tele fet dsp (tale-fetch-from-display-vector) instructions requires two input
mono records: first, a pointer P; second, an integer index X = int x. The pointer P must be on the stack S
and must point to some virtual processor 11" whose state is either new or asleep. The integer index X may be
an immediate operand in the instruction, may be on the stack S, or may be in some working register Ri, 8<i<16.
An index which is on the stack S is denoted in the instruction by "¥"; stack inputs are popped from the stack
prior to formation of the output mono record. [f X is an immediate operand then only its value x occurs
Within the instruction, coded as a short 2's complement field. Each tele fet dsp instruction pushes onto the
stack S of T as its single ouput mono record a copy Q of the x-th subrecord OV’.x of the display vector V' of
m.

20 tele fet dsp x x immediate
S S
Plptr la
oV’ Dy’ i
m.dp LT 7] > . dp C T]
A -T-

x-th subrecord x-th subrecord

BEFORE AFTER

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE

22 Jun 89 Page 037 of 043

21 tele fet dsp # x on stack
Xlint x Qla
Plptr
,, v’ oV’ }
™ dp [1] ST dp []
Jr. T
x-th subrecord ! x-th subrecord
BEFORE AFTER
82 tele fet dsp Ri x in Ri, 2<i<16
Ri
Plptr Xlint x | 0fa
] py' oy’)
> . dp > Ta]] m.dp C T]
Jr. T
x-th subrecord ' x-th subrecord !
BEFORE AFTER

3.8.2.1. Tele Display Vector Store Instructions

Each of the three one-argument tele sto dsp (tele-store-into-display-vector) instructions requires three tnput
mono records: first, a pointer P; second, a mono record Q which either is either null or is a (sub)pointer
pointing (in)to some execution contour; third, an integer index X = int x. The pointer P nust be on the stack
S and must point to some virtual processor M’ whose state is either new or asleep and whose display pointer
M .dp points to a display vector DV'. The mono record Q must be on the stack S. The integer index X may be
an immediate operand in the instruction, may be on the stack S, or may be in some working register Ri, 8£i<1b.
fn index which is on the stack S is denoted in the instruction by "¥"; stack inputs are popped from the stack.
If X is an immediate operand then only its value x occurs within the instruction, coded as = short 2's
complement field. Each tele sto dsp instruction stores the input record O into the x-th subrecord DV’ .x of th
display vector DV' of the virtual processor M'.

00 tele sto dsp x x immediate

S

Plptr S|]

oV’ oV’)

m.dp S - m . gp————[0T]
.T.

1 |

x-th subrecord x-th subrecord

BEFORE AFTER

CONTOUR MODEL ARCHITECTURE. and ASSEMBLY LANGUAGE 22 Jun 89 Page 938 of 043
01 tele sto dsp # x on stack
S
Xlint x
Q
Plptr S|]
o oy’ oV’
m.dp [fa]] m.dp———>| Q
T A
x-th subrecord - x-th subrecord !
. BEFORE AFTER
02 tele sto dsp Ri x in R, @<iKi6
S
] Ri Ri
Plptr X[int x | 5| | X[int x
o oy’ oV’ _
m.dp o [] m.dp———[[0]
T A
x-th subrecord I x-th subrecord 1
BEFORE AFTER

3.8.3. Module Entry Instructions

Module entry requires specialized instructions both for maintaining the stack and for adjoining new execution
contours.

3.8.3.8. Module Entry Stack Instructions

Module entry utilizes specialized instructions both to save registers and exchange label just before entry and
to save stack and exchange stack just after entry., To enable the virtual processor T to coerce another
virtual processor T' to enter a procedure module, tele versions of the instructions to save registers and
exchange labels are provided, '

0@ sav
This instruction is defined in 3.1.1.83.

save selected registers

81 tele sav
This instruction is defined in 3.1.1.85.

save selected registers of another virtual processor

82 xch Llab exchange label
m nm
dp | [sp_|—S dp| lsp |—S
N X
Lab o Lab
X N
BEFORE AFTER

The top record N of the stack S must be an instruction label. By the time of the execution phase of this
instruction, the instruction pointer portion of the instruction label X of I has been incremented to point to
the instruction in | which immediately follows the exchange label instruction. Execution of this instruction
comprises: first, N is popped from S to a microregister; second, X is pushed onte S; third, N is placed into
the label register T. lab.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 039 of 043

03 tele xch lab exchange label of another virtual processor
n m
dp] [sp_|—s dp| [sp|—s] |
(anake) N (anake)
ptr
Lab Lab
Y Y
m } n
dp] [sp__]=5"| dp| [se_|—s’
(asleep) (asleep) X
Lab lab
X N
BEFORE AFTER

The top record N of the stack S must be an instruction label, while the next-to-top record P of the stack S
must be a pointer to another virtual processor T' whose state is asleep, whose stack pointer points to some
stack record S', and whose label register contains some instruction label X. Execution of this instruction
comprises: first, N and P are popped from S to a microregisters; second, X is pushed onto the stack record §’
of M"; third, N is placed into the label register T'.lab of T".

04 sav stk save duplicate of stack record
This instruction is defined in 3.3.02.

@5 xch stk . exchange stack
This instruction is defined in 3.3.01.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 88 Page 848 of 043

3.8,3.1. The Exscution Contour Adjunction Instruction

The execution contour adjoin instruction is a powerful instruction which enables the virtual processor m,
given the cp and ep of a contour label designatin both a declaration progranm module M and an execution
environment E for its activation, to perform the following operations as part of the action of establishing
the structure required for an entry to be made into M, either by I or by another virtual processor M which is
being coerced by T to enter M: allocate an execution contour of appropriate size, attach that execution
contour to the execution skeleton so as to effect the environment E, connect the execution contour to the
program skeleton, provide an entry instruction label for entry into M, and provide a pointer to the execution
contour to enable the transmission of parameters %o the execution contour.

00 adjoin allocate and attach execution contour
The top record CP of the stack 5 must be a pointe to some program contour C, while the next-to-top record EP
of the stack S must either be null or be a pointer to some execution contour. Execution of this instruction
comprises: first, both CP and EP are popped from the stack S to microregisters; second, an execution contour D
is allocated in accordance with the tag subrecord C.tag of C; third, a copy of CP is placed into the
antecedent pointer subrecord D.ap of D; fourth, a copy of EP is placed into the environment pointer subrecord
D.ep of D: fifth, an entry instruction. label whose ep is a pointer to D and whose ip is a copy of the
instruction pointer subrecord C.ip of C is pushed onto S; sixth, a pointer to D is pushed onto S.

ep |
1]
C 4 4
ep
-2: ip |ptr o —
-3: tag [tag con int n
dsp |int - S
ref [nt - CP|ptr
con int - EP|eee
BEFORE
ep |
| n-1: [null T
C } + n
8: [null l
ep -1: |eee ep = EP
-2: ip [ptr — -2: |ptr ap = CP
-3: tag [tag con int n null sp
dsp [int - 5 null dsp
ref [int - Plptr int 2 ref
con int - ILli-Llab ptr ptr :l——-———> con int n tag
L —— 7
AFTER

For precision and clarification we give below a pseudo-CMAL coding which is equivalent to the actual
microcoded realization of adjoin; the registers CPU® and CPU! are microregisters distinct from the working
egisters RO,...RF,

res CPU@; sel CPUD,-3; fet; aloc; res CPUT; allocate econ
sel CPU1,-1; sto; set e-con.ep
sav CPUB; sel CPU1,-2; sto; set e-con.ap
say CPUl; sal CPUB,-2; fet; mak i-lab; form entry i-lab

sav CPU1; return pointer to e-con for parameter passage

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 041 of 043
3.8.4. Module Exit Stack Instructions

CMAL provides 26 stack-related instructions for use in conjunction with program module exit. Hhen the virtual
processor TT is about to exit a program module M, the conceptual stack CS of T (see section 2.2) satisfies the
following conditions. [¥f M has been entered as a task, then M is a procedure statement module and CS is
empty; in all other cases, CS contains at or near its top an exit instruction label EL. If M is a statement
module then EL is the top record in CS; if M is an expression module then an exit value EV is the top record
in CS and EL is the next-to-top record in C5. |f M is a normal program module then CS contains just below EL
a register selector RS followed by associated saved register contents; if M is a special system module the
register selector and saved contents may be absent. |f an exit value EV is present, it is in the stack record
S which is attached to T and constitutes the top stack record of the stack environment of M. [f M is a block
module then EL, RS, and saved register contents are in S; if M is a procedure module then EL, RS, and saved
register contents are the top records in the next lower stack record S’ of the stack environment of TI. Exit
from a block module does not require a stack reversion; exit from a procedure module does require a stack
reversion and may even require a reversion to a duplicate of the next-to-top stack record of the stack
environment. Display vector update may require extraction of the ep of EL for use as a stack parameter to a
specialized system procedure for display update.

20 rs revert stack
This instruction is identical to the instruction “rev stk" of 3.1.2.01. Execution of this instruction
comprises the following steps. First, a copy SP of the stack pointer subrecord S.sp of the stack record S is
placed into a microregister. Second, if SP is null a fault occurs. Suppose that SP is non-null. Third, if
SP is not a pointer to a stack record a fault occurs. Suppose that SP is a pointer to a stack record §'
Fourth, if the reference count of $' exceeds 1 a fault occurs. Suppose that the reference count of S’ equals
1. Fifth, a copy of SP is placed into the stack pointer register M.sp of I.

81 cs conditional duplicate revert stack
Execution of this instruction comprises the following steps. First, a copy SP of the stack pointer subrecord
S.sp of the stack record S is placed into a microregister. Second, if SP is null a fault occurs. Suppose
that SP is non-null. Third, if SP is not a pointer to a stack record a fault occurs. Suppose that SP is a
pointer to a stack record S°. Fourth, the reference count of S'.ref is inspected. |f S'.ref equals 1 then a
copy of SP is placed into the stack pointer register M.sp of T, and the execution is complete. If S'.ref
exceeds 1 then an exact duplicate §'' of S' is allocated, the reference count of S'' is set to 1, a pointer to
S'' is placed into the stack pointer register M.sp of T, and the execution is complete.

02 ee extract environment pointer
Execution of this instruction comprises the following steps. First, if the stack S is empty or if its top
record is not an instruction label then a fault occurs. Suppose that the top record of S is an instruction
label and that EP is the environment pointer portion of that label. Second, a copy of EP is pushed onto S.

23 rl restore label
Execution of this instruction comprises the following steps. First, if the stack S is empty or if its top
record is not an instruction label then a faul! occurs. Suppose that the top record of S is an instruction
label EL. Second, EL is popped from S and placed into the label register T.lab of M. Caution: this
instruction is not to be used for an intended leap.

24 dl discard label
Execution of this instruction comprises the following steps. First, if the stack S is empty or if its top
record is not an instruction label then a fault occurs. Suppose that the top record of S is an tnstruction
label EL. Second, EL (s popped from S.

85 rsee revert stack, extract environment pointer
Execution of this instruction comprises the following steps. First, the steps of "rs" are performed; a fault
may occur. Suppose that no fault occurs. Second, the steps of “ee” are performed.

26 csee conditional duplication revert stack, extract environment pointer
Execution of this instruction comprises the following steps, First, the steps of “cs" are performed; a fault
may occur. Suppose that no fault occurs. Second, the steps of “ee” are performed.

87 rsrl revert stack, restore label
Execution of this instruction comprises the following steps. First, the steps of "rs" are performed; a fault
may occur. Suppose that no fault occurs. Second, the steps of "rl" are performed.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 89 Page 042 of 043

08 csrl conditional duplication revert stack, restore label
Execution of this instruction comprises the following steps. First, the steps of "cs" are performed; a fault
may occur. Suppose that no fault occurs. Second, the steps of “rl" are performed.

89 rlrr restore label, restore registers
Execution of this instruction comprises the following steps, First, the steps of “rl" are performed; a fault
may occur. Suppose that no fault occurs. Second, if now the stack S is empty or if its top record is not a
register selector then a fault occurs. Suppose that the top record of S is a register selector M. Third, the
steps of "res” are performed (see 3.1.1.04).

10 dlrr discard label, restore registers
Execution of this instruction comprises the following steps. First, the steps of "dl" are performed; a fault
may occur. Suppose that no fault occurs. Second, if now the stack S is empty or if its top record is not a
register selector then a fault occurs. Suppose that the top record of S is a register selector M. Third, the
steps of "res" are performed (see 3.1.1.04).

11 rsrirr ‘ ’ revert stack, restore label, restore registers
Execution of this instruction comprises the following steps. First, the steps of "rsrl" are performed; a
fault may occur. Suppose that no fault occurs., Second, the steps of "res" are performed (see 3.1.1.84).

12 esrlrr conditional duplicate revert stack, restore label, restore registers
Execution of this instruction comprises the following steps. First, the steps of "csrl" are performed; a
fault may occur. Suppose that no fault occurs. Second, the steps of "res" are performed (see 3.1.1.084).

13 rvrs retain value, revert stack
Execution of this instruction comprises the following steps. First, if the stack S is empty then a fault
occurs. Suppose that the top record of S (s a mono record EV, Second, EV s popped from 5 to a

microregister. Third, the steps of "rs" are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto the stack record now attached to the virtual processor I,

14 rves retain value, conditional duplicate revert stack
Execution of this instruction comprises the following steps. First, if the stack S is empty then a fault
oceurs. Suppose that the top record of S is a mono record EV. Second, EV is popped from S to a

"

microregister. Third, the steps of "cs" are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto the stack record now attached to the virtual processor TI.

15 rvee retain value, extract environment pointer
Execution of this instruction comprises the following steps. First, if the stack S is empty then a fault
occurs. Suppose that the top record of S is a mono record EV, Second, EV is popped from S to 2
microregister. Third, the steps of "ee" are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV (s pushed onto 5. Fifth, a “swp" is performed. The actual microcode realization of
"rvee" (s more effecient than these steps indicate.

16 rvrl retain value, restore label
Execution of this instruction comprises the following steps. First, if the stack S is empty then a fault
occurs, Suppose that the top record of S is a mono record EV. Second, EV is popped from S to a

microregister. Third, the steps of "rl" are performed; a fault may occur. Suppose that no fault occurs
Fourth, a copy of EV is pushed onto S.

17 rvdl retain value, discard label
Execution of this instruction comprises the following steps. First, if the stack § (s empty then a fault
occurs. Suppose that the top record of S is a mono record EV. Second, EV s popped from S to a

microregister. Third, the steps of "dl" are performed; a fault may occur. Suppose that no fault occurs
Fourth, a copy of EV is pushed onto S.

18 rvrsee retain value, revert stack, extract environment pointer
Execution of this instruction comprises the following steps. First, if the stack S is empty then a fault
occurs. Suppose that the top record of S is a mono record EV, Second, EV is popped from S to a

microregister. Third, the steps of "rsee" are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto the stack record now attached to the virtual processor T. Fifth, a "sup"
is performed. The actual microcode realization of "rvrsee" is more efficient than these steps indicate.

CONTOUR MODEL ARCHITECTURE and ASSEMBLY LANGUAGE 22 Jun 88 Page 843 of 943

19 rvecsee retain value, conditional duplicate revert stack, extract environment pointer
Execution of this instruction comprises the following steps. First, if the stack S is empty then a fault
eccurs. Suppose that the top record of S is a mono record EV, Second, EV is popped from S to a

microregister. Third, the steps of "csee" are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV (s pushed onto the stack record now attached to the virtual processor TI. Fifth, a "swp"
ts performed. The actual microcode realization of "rvcsee" is more efficient than these steps indicate,

28 rvrsrl : retain value, revert stack, restore label
Execution of this instruction comprises the following steps. First, if the stack S is empty then a fault
occurs., Suppose that the top record of S is a mono record EV. Second, EV is popped from S to a
microregister. Third, the steps of "rsrl" are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto the stack record now attached to the virtual processor T.

21 rvesrl retain value, conditional duplicate revert stack, restore label
Execution of this instruction comprises the following steps. First, if the stack S is empty then a fault
0CCUrS. Suppose that the top record of S is a mono record EV. Second, EV s popped from S to a
micreregister. Third, the steps of "csrl" are performed; a fault may occur. Suppose that no fault occurs.

Fourth, a copy of EV is pushed onto the stack record now attached to the virtual processor T.

22 rvrlrr retain value, restore label, restore registers
Execution of this instruction comprises the following steps., First, if the stack S is empty then a fault
occurs, Suppose that the top record of S is a mono record EV, Second, EV s popped from S to a

microregister. Third, the steps of "rlrr" are performed: a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto S.

23 rydlrr retain value, restore label, restore registers
Execution of this instruction comprises the following steps. First, if the stack S is empty then a fault
occurs. Suppose that the top record of S is a mono record EV. Second, EV (s popped from S to a

microregister. Third, the steps of "dlrr" are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV ts pushed onto S.

24 rvrsrlrr retain value, revert stack, restore label, restore registers
Execution of this instruction comprises the following steps. First, if the stack S is empty then a fault
occurs. Suppose that the top record of S is a mono record EV. Second, EV is popped from S to a

microregister. Third, the steps of “rsrlrr" are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto the stack record now attached to the virtual processor TI.

25 rvesrlrr retain value, conditional duplication revert stack, restore label, restore registers
Execution of this instruction comprises the following steps. First, if the stack S is empty then a fault
occurs. Suppose that the top record of S is a mono record EV. Second, EV is popped from S to a

microregister. Third, the steps of "csrlrr" are performed; a fault may occur. Suppose that no fault occurs.
Fourth, a copy of EV is pushed onto the stack record now attached to the virtual processor TI.

A complete listing of the 26 exit stack instructions is given below.

29 rs 13 rvrs

21 cs 14 rvecs

22 ee 15 rvee

23 rl 09 rlrr 16 rvrl 22 rvrirr
24 dl 19 dlrr 17 rvdl 23 rvdlrr
35 rsee 18 rvrsee

06 csee 19 rvecses

87 rsrl i1 rsrlrr 20 rvrsrl 24 rvrsrlrr

28 esrl 12 esrlrr 21 rvesrl 25 rvesrlrr

